Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "5th Academic Symposium of Metabolic Biology Branch of Chinese Biophysica". Since there have been only a few results, also nearby values are displayed.

Showing below up to 25 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • MiPschool Baton Rouge LA US 2009  + (3<sup>rd</sup> MiP''summer school'' on Mitochondrial Respiratory Physiology, 2009 June 17-23, Baton Rouge, Louisiana US.)
  • Eugeny I. Schwartz Conference 2015  + (3<sup>rd</sup> Russian Congress with International Participation “Molecular Basis of Clinical Medicine: State-of-the-Art and Perspectives” dedicated to the memory of Eugeny I. Schwartz, St. Petersburg , Russia;)
  • Ophthalmology Conference 2018 Rome IT  + (3rd Edition of International Conference on Eye and Vision, Rome, Italy; 2018)
  • METABO & Cancer 2019 Marseille FR  + (3rd edition - Metabolism and Cancer Meeting, Marseille, France, 2019)
  • MacDonald 2014 Abstract MiP2014  + (4-hydroxy-2-oxoglutarate aldolase (HOGA) i4-hydroxy-2-oxoglutarate aldolase (HOGA) is a bi-functional mitochondrial enzyme, expressed predominantly in liver and kidney. HOGA is involved in the hydroxyproline degradation pathway (HOGglyoxylate+pyruvate), and mutations in HOGA result in primary Hyperoxaluria Type III, characterized by excessive oxalate production and kidney stone deposition [1]. We hypothesized that HOGA may also be involved in the TCA cycle as an oxaloacetate decarboxylase (oxaloacetatepyruvate; Fig. 1), which may allow the TCA cycle to turnover in the absence of pyruvate and/or excess oxaloacetate. </br>The kinetics of HOGA with substrates HOG and oxaloacetate were investigated by measuring the ''K''’<sub>m</sub> and ''k''<sub>cat</sub> of recombinant human HOGA, using an LDH-coupled microplate assay. The role of HOGA in the TCA cycle was investigated using mitochondria, isolated from rat liver and kidney, where HOGA is highly expressed, and brain and heart, where expression is lower. ADP-stimulated malate respiration was measured relative to ADP-malate + pyruvate (M:PM), using oxygraphy (Oroboros Oxygraph-2k, note malate was used as oxaloacetate cannot cross the inner mitochondrial membrane).</br> </br>While HOGA was 75% less efficient at cleaving oxaloacetate than its other substrate, HOG (''K''’<sub>m</sub>/''k''<sub>cat</sub>), the ''K''’<sub>m</sub> for oxaloacetate was within range of that estimated for TCA intermediates (''K''’<sub>m,ox</sub>=129±8 µM, ''k''<sub>cat,ox</sub>=0.52±0.01 s<sup>-1</sup>; ''K''’<sub>m,HOG</sub>=55±5 µM, ''k''<sub>cat,HOG</sub>=1.01±0.03 s<sup>-1</sup>). Overall, HOGA appears to use the same catalytic mechanism to cleave both HOG and oxaloacetate substrates. Interestingly, the TCA cycle intermediate a-ketoglutarate was found to be a competitive inhibitor of HOGA oxaloacetate decarboxylase activity (''K''<sub>i</sub>=2.8 mM). Mitochondria from rat liver had the highest M:PM respiration relative to all other organs (0.46±0.05, ''P''<0.05). Though kidney had a higher M:PM respiration than heart (0.27±0.02 vs 0.15±0.02, ''P''<0.05 in kidney and heart, respectively), brain respired as well as kidney (0.33±0.04).</br></br> </br>In summary, HOGA cleaves oxaloacetate and HOG using the same catalytic mechanism but was less efficient with oxaloacetate. Liver and kidney have high HOGA expression, and mitochondria from both respire significantly better on malate relative to PM than heart mitochondria. The brain respires just as well with malate compared to kidney, and this may be due to high expression of malic enzyme, which can convert malate directly to pyruvate (Fig. 1). Malate supported respiration in HOGA overexpressing cells will confirm the direct role of HOGA in the TCA cycle.ession of malic enzyme, which can convert malate directly to pyruvate (Fig. 1). Malate supported respiration in HOGA overexpressing cells will confirm the direct role of HOGA in the TCA cycle.)
  • MBSJ 2018 Yokohama JP  + (41st Annual Meeting of the Molecular Biology Society of Japan, Yokohama, Japan, 2018.)
  • The 42nd Annual Meeting of The Molecular Biology Society of Japan  + (42nd Annual Meeting of The Molecular Biology Society of Japan, Kurume, 2018)
  • ISOTT 2015  + (43<sup>rd</sup> Annual Meeting of the International Society on Oxygen Transport to Tissue (ISOTT))
  • AICBC 2024 Navi Mumbai IN  + (46<sup>th</sup> All India Cell Biology Conference, Navi Mumbai, India, 2024)
  • 46th ISOBM Congress 2019 Athens GR  + (46th annual congres of the International Society of Oncology and Biomarkers, Athens, Greece, 2019)
  • ESCI 2015  + (49th Annual Scientific Meeting of the European Society for Clinical Investigation, Cluj-Napoca, Romania; [http://www.esci.eu.com/meetings/ ESCI 2015])
  • SMRM2014 Manipal IN  + (4<sup>th</sup> Annual Conference of the Society for Mitochondrial Research and Medicine, Kolkata, India.)
  • MiPschool Druskininkai LT 2010  + (4<sup>th</sup> MiP''summer school'' on Mitochondrial Respiratory Physiology, 2010 June 10-16, Druskininkai, Lithuania.)
  • TrMAD2014  + (4<sup>th</sup> Regional Translational Research in Mitochondria, Aging, and Disease Symposium, Pittsburgh, PA, US. [http://www.upci.upmc.edu/trmad/ TrMAD2014])
  • 4th Global Chinese Symposium & The 8th Symposium for Cross-straits on Free Radical Biology and Medicine 2018 Macao CN  + (4th Global Chinese Symposium & The 8th Symposium for Cross-straits, Hong Kong and Macao on Free Radical Biology and Medicine, Macao, China, 2018)
  • 4th edition Metabolism & Cancer 2021 Virtual  + (4th edition Metabolism & Cancer, Virtu4th edition Metabolism & Cancer, Virtual, 2021 </br></br></br>== Program ==</br>:::: [https://www.metabolism-cancer.com/program/ here]</br></br>== Organizers ==</br>:::: The list of organizers can be found [https://www.metabolism-cancer.com/under-construction/ here]</br></br>== Registration ==</br>:::: [https://www.metabolism-cancer.com/registration/ Registration and more information]</br></br>== Oroboros at MetaboCancer 2021==</br>:::: [[Gnaiger Erich]]: Oroboros Instruments innovations - NextGen-O2k and Bioenergetics Communications, ''May 28th at 11:25''</br></br>=== Booth ===</br>:::: The Oroboros team is looking forward to welcome you at our Oroboros booth which will be available at this conference.</br></br></br>== Support ==</br>[[File:Template NextGen-O2k.jpg|right|350px|link=NextGen-O2k]]</br></br>[[Category:NextGen-O2k]]</br>:::: Supported by project NextGen-O2k which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 859770.</br><br/></br><br/></br><br/></br><br/> agreement No. 859770. <br/> <br/> <br/> <br/>)
  • MacPherson 2016 Am J Physiol Cell Physiol  + (5'-AMP-activated protein kinase (AMPK) is 5'-AMP-activated protein kinase (AMPK) is activated as a consequence of lipolysis and has been shown to play a role in regulation of adipose tissue mitochondrial content. Conversely, the inhibition of lipolysis has been reported to potentiate the induction of protein kinase A (PKA)-targeted genes involved in the regulation of oxidative metabolism. The purpose of the current study was to address these apparent discrepancies and to more fully examine the relationship between lipolysis, AMPK, and the β-adrenergic-mediated regulation of gene expression. In 3T3-L1 adipocytes, the adipose tissue triglyceride lipase (ATGL) inhibitor ATGListatin attenuated the Thr(172) phosphorylation of AMPK by a β3-adrenergic agonist (CL 316,243) independent of changes in PKA signaling. Similarly, CL 316,243-induced increases in the Thr(172) phosphorylation of AMPK were reduced in adipose tissue from whole body ATGL-deficient mice. Despite reductions in the activation of AMPK, the induction of PKA-targeted genes was intact or, in some cases, increased. Similarly, markers of mitochondrial content and respiration were increased in adipose tissue from ATGL knockout mice independent of changes in the Thr(172) phosphorylation of AMPK. Taken together, our data provide evidence that AMPK is not required for the regulation of adipose tissue oxidative capacity in conditions of reduced fatty acid release.</br></br>Copyright © 2016 the American Physiological Society.© 2016 the American Physiological Society.)
  • Stride 2012 Front Physiol  + (5'-adenosine monophosphate-activated prote5'-adenosine monophosphate-activated protein kinase (AMPK) is considered central in regulation of energy status and substrate utilization within cells. In heart failure the energetic state is compromised and substrate metabolism is altered. We hypothesized that this could be linked to changes in AMPK activity and we therefore investigated mitochondrial oxidative phosphorylation capacity from the oxidation of long- and medium-chain fatty acids (LCFA and MCFA) in cardiomyocytes from young and old mice expressing a dominant negative AMPKα2 (AMPKα2-KD) construct and their wildtype (WT) littermates. We found a 35-45% (P < 0.05) lower mitochondrial capacity for oxidizing MCFA in AMPKα2-KD of both age-groups, compared to WT. This coincided with marked decreases in protein expression (19/29%, P < 0.05) and activity (14/21%, P < 0.05) of 3-hydroxyacyl-CoA-dehydrogenase (HAD), in young and old AMPKα2-KD mice, respectively, compared to WT. Maximal LCFA oxidation capacity was similar in AMPKα2-KD and WT mice independently of age implying that LCFA-transport into the mitochondria was unaffected by loss of AMPK activity or progressing age. Expression of regulatory proteins of glycolysis and glycogen breakdown showed equivocal effects of age and genotype. These results illustrate that AMPK is necessary for normal mitochondrial function in the heart and that decreased AMPK activity may lead to an altered energetic state as a consequence of reduced capacity to oxidize MCFA. We did not identify any clear aging effects on mitochondrial function. any clear aging effects on mitochondrial function.)
  • Hanley 2005 J Physiol  + (5-Hydroxydecanoate (5-HD) blocks pharmacol5-Hydroxydecanoate (5-HD) blocks pharmacological and ischaemic preconditioning, and has been postulated to be a specific inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. However, recent work has shown that 5-HD is activated to 5-hydroxydecanoyl-CoA (5-HD-CoA), which is a substrate for the first step of β-oxidation. We have now analysed the complete β-oxidation of 5-HD-CoA using specially synthesised (and purified) substrates and enzymes, as well as isolated rat liver and heart mitochondria, and compared it with the metabolism of the physiological substrate decanoyl-CoA. At the second step of β-oxidation, catalysed by enoyl-CoA hydratase, enzyme kinetics were similar using either decenoyl-CoA or 5-hydroxydecenoyl-CoA as substrate. The last two steps were investigated using l-3-hydroxyacyl-CoA dehydrogenase (HAD) coupled to 3-ketoacyl-CoA thiolase. ''V''max for the metabolite of 5-HD (3,5-dihydroxydecanoyl-CoA) was fivefold slower than for the corresponding metabolite of decanoate (l-3-hydroxydecanoyl-CoA). The slower kinetics were not due to accumulation of d-3-hydroxyoctanoyl-CoA since this enantiomer did not inhibit HAD. Molecular modelling of HAD complexed with 3,5-dihydroxydecanoyl-CoA suggested that the 5-hydroxyl group could decrease HAD turnover rate by interacting with critical side chains. Consistent with the kinetic data, 5-hydroxydecanoyl-CoA alone acted as a weak substrate in isolated mitochondria, whereas addition of 100 μm 5-HD-CoA inhibited the metabolism of decanoyl-CoA or lauryl-carnitine. In conclusion, 5-HD is activated, transported into mitochondria and metabolised via β-oxidation, albeit with rate-limiting kinetics at the penultimate step. This creates a bottleneck for β-oxidation of fatty acids. The complex metabolic effects of 5-HD invalidate the use of 5-HD as a blocker of mitochondrial KATP channels in studies of preconditioning.TP channels in studies of preconditioning.)
  • Mitchell 2011 Biochim Biophys Acta  + (50 years ago Peter Mitchell proposed the c50 years ago Peter Mitchell proposed the chemiosmotic hypothesis for which he was awarded the Nobel Prize for Chemistry in 1978. His comprehensive review on chemiosmotic coupling known as the first “Grey Book”, has been reprinted here with permission, to offer an electronic record and easy access to this important contribution to the biochemical literature. This remarkable account of Peter Mitchell's ideas originally published in 1966 is a landmark and must-read publication for any scientist in the field of bioenergetics. As far as was possible, the wording and format of the original publication have been retained. Some changes were required for consistency with BBA formats though these do not affect scientific meaning. A scanned version of the original publication is also provided as a downloadable file in Supplementary Information. See also Editorial in this issue by Peter R. Rich. Original title: CHEMIOSMOTIC COUPLING IN OXIDATIVE AND PHOTOSYNTHETIC PHOSPHORYLATION, by Peter Mitchell, Glynn Research Laboratories, Bodmin, Cornwall, England.h Laboratories, Bodmin, Cornwall, England.)
  • ESCI 2021 Virtual  + (55<sup>th</sup> ESCI meeting, Virtual, 2021)
  • ESCI 2022 Bari IT  + (56<sup>th</sup> ESCI meeting, Bari, Italy, 2022)
  • ESCI 2023 Prague CZ  + (57<sup>th</sup> ESCI meeting, Prague, Czech Republic, 2023)
  • Targeting Mitochondria World Congress 2014  + (5<sup>th</sup> Targeting Mitochondria World Congress - [http://www.targeting-mitochondria.com/ Targeting Mitochondria], Berlin DE)
  • 5th Academic Symposium of Metabolic Biology Branch of Chinese Biophysical Society 2022 Zunyi CN  + (5th Academic Symposium of Metabolic Biology Branch of Chinese Biophysical Society, Zunyi, China, 2022)
 (5th Academic Symposium of Metabolic Biology Branch of Chinese Biophysica)
  • 5th International Conference of Mitochondrial Medicine  + (5th International Mitochondrial Medicine Conference Mitochondrial, Online, 2021)
  • NHLBI Mitochondrial Biology Symposium 2019 Bethesda US  + (5th NHLBI Mitochondrial Biology Symposium,5th NHLBI Mitochondrial Biology Symposium, Bethesda, Maryland, USA, 2019 </br></br></br>== General information == </br>::::On September 26-27, 2019, experts from around the world will gather on the NIH Campus in Bethesda, Maryland to review advances in our understanding of how mitochondrial structure, function, and interactions within the cell contribute to diseases and aging; and to highlight recent progress made with animal models and therapeutic interventions.</br></br>== Venue == </br>:::: William H. Natcher Conference Center – Building 45</br>:::: National Institutes of Health</br>:::: 45 Center Drive</br>:::: Bethesda, MD 20814</br>:::: [https://2019mbs.com/meeting-venue/ How to get there]</br></br>== Organizer ==</br>:::: [https://2019mbs.com/organizers/ Information available here]</br></br>== Programme ==</br>:::: [https://2019mbs.com/agenda/ Agenda]</br></br>== Speakers == </br>:::: List of speakers can be found [https://2019mbs.com/featured-speakers/ here]</br></br>== Registration ==</br></br>:::: [https://www.eventbrite.com/e/the-2019-nhlbi-mitochondrial-biology-symposium-registration-54765893261 Registration and more information]</br></br>:::: The abstracts submission deadline is Friday, June 28, 2019, at 11:59PM EST. </br>:::: All submissions must be made through the abstract submission portal. </br>:::: Abstracts should be no longer than 500 words and include four clearly identifiable components: Background, Methods, Results, and Conclusion. </br>:::: Abstracts will be reviewed by the Organizing Committee. Acceptance will be based on the quality of the abstract and availability of space. Four high-quality abstracts will be selected for oral presentation.ts will be selected for oral presentation.)
  • 5th edition Metabolism & Cancer 2023 Nice FR  + (5th edition Metabolism & Cancer, Nice,5th edition Metabolism & Cancer, Nice, France, 2023 </br></br>== Venue ==</br>:::: [https://www.metabolism-cancer.com/?utm_source=altemail&utm_medium=email&utm_campaign=2023-01-04%20METABO%202023%201 How to get there]</br></br>== Program ==</br>:::: Program available [https://www.metabolism-cancer.com/?utm_source=altemail&utm_medium=email&utm_campaign=2023-01-04%20METABO%202023%201 here]</br></br>== Organizers ==</br>:::: The list of organizers can be found [https://www.metabolism-cancer.com/?utm_source=altemail&utm_medium=email&utm_campaign=2023-01-04%20METABO%202023%201 here]</br></br>== Registration ==</br>:::: [https://www.metabolism-cancer.com/?utm_source=altemail&utm_medium=email&utm_campaign=2023-01-04%20METABO%202023%201 Registration and more information]utm_campaign=2023-01-04%20METABO%202023%201 Registration and more information])
  • BPS19 2019 Baltimore US  + (63rd Annual Meeting of the Biophysical Soc63rd Annual Meeting of the Biophysical Society, Baltimore, Maryland USA, 2019 </br></br></br></br>== General information==</br>:::: The Biophysical Society meeting is the only major scientific meeting in the United States that routinely includes bioenergetics and mitochondrial topics. The Bioenergetics, Mitochondria, and Metabolism Subgroup has its two symposia on the first day of the meeting, March 2nd, and these two symposia have a distinguished group of speakers who are leaders in the field of bioenergetics. </br></br>== Venue == </br>:::: Baltimore Convention Center</br>:::: 1 W. Pratt Street</br>:::: Baltimore, Maryland 21201</br>::::[https://www.biophysics.org/2019meeting/hotel-travel Hotel and Travel]</br></br>== Programme ==</br>:::: [https://www.biophysics.org/2019meeting/program here]</br></br></br>== Registration ==</br>:::: [https://www.biophysics.org/2019meeting/registration Registration and more information]tration Registration and more information])
  • AMI 2023 Jhansi IN  + (64<sup>th</sup> Annual International Conference of the Associate of Microbiologists of India, Jhansi, India, 2023)
  • BPS2023 San Diego US  + (67th Annual Meeting of the Biophysical Society, San Diego, California, USA, 2023)
  • ISOTT 2017 Halle/Saale DE  + (6<sup>th</sup> 45th Annual Meeting of the International Society on Oxygen Transport to Tissue (ISOTT), Halle/Saale, Germany.)
  • 6th Annual Conference of Chinese Society for Neurobiological Control of Metabolism 2024 Quanzhou CN  + (6<sup>th</sup> Annual Conference of Chinese Society for Neurobiological Control of Metabolism, Quanzhou, China, 2024)
  • SMRM2017 New Delhi IN  + (6<sup>th</sup> Annual Conference of the Society for Mitochondrial Research and Medicine, New Delhi, India.)
  • MiPschool Copenhagen DK 2013  + (6<sup>th</sup> MiP''summer school'' on Mitochondrial Physiology, 2013 August 26-30, Copenhagen, Denmark.)
  • 6th Biannual Meeting on Mitochondria Apoptosis & Cancer 2019 Prague CZ  + (6th Biannual Meeting on Mitochondria Apoptosis & Cancer, Prague, Czech Republic, 2019)
  • 6th EU-Cardioprotection Meeting 2021 Riga LV  + (6th EU-Cardioprotection WG Meeting CA16625 on mito and metabolism as targets for cardioprotection., Virtual Event, 2021)
  • 6th International Conference on Tumor Microenvironment and Cellular Stress 2019 Crete GR  + (6th International Conference on Tumor Microenvironment and Cellular Stress: Signaling, Metabolism, Imaging and Therapeutic Targets, Chania, Crete, Greece, 2019)
  • 6th Research Day Innsbruck AT  + (6th Research Day, Innsbruck, Austria, 2023)
  • 77th Annual Meeting of the JCA 2018 Osaka JP  + (77th Annual Meeting of the Japanese Cancer Association at the Osaka International Convention Center and RIHGA, Osaka, Japan, 2018)
  • The 77th Japanese Society of Physical Fitness and Sports Medicine 2022 Tochigi JP  + (77th Japanese Society of Physical Fitness and Sports Medicine, Tochigi, 2022)
  • ISOTT 2018 Seoul KR  + (7<sup>th</sup> 46th Annual Meeting of the International Society on Oxygen Transport to Tissue (ISOTT). Seoul, South Korea, 2018)
  • ISAP 2021 Virtual  + (7th Conference of the International Society for Applied Phycology - ISAP2021, Tsukuba, Japan, 2021)
  • 7th European Phycological Congress 2019 Zagreb HR  + (7th European Phycological Congress, Zagreb, Croatia, 2019)
  • 7th Molecular Mechanisms of Axon Degeneration Meeting Loch Lomond GB  + (7th Molecular Mechanisms of Axon Degeneration Meeting, Loch Lomond, Scotland, Great Britain, 2019)
  • 7th World Congress on Targeting Microbiota 2019 Krakow PL  + (7th World Congress on Targeting Microbiota7th World Congress on Targeting Microbiota, Krakow, Poland, 2019 </br></br></br></br>== Venue == </br>:::: Park Inn by Radisson Krakow Hotel</br>:::: Ul. Monte Cassino 2 PL</br>:::: 30337 - Krakow - Poland</br>:::: [https://www.microbiota-site.com/venue.html More information]</br></br>== Organizer ==</br>:::: [https://www.microbiota-site.com/committee.html Information available here]</br></br>== Programme ==</br>:::: [https://www.microbiota-site.com/images/2019/PDF/Targeting_Microbiota_2019_Agenda_-_V7.pdf Agenda]</br></br>== Speakers == </br>:::: List of speakers can be found [https://www.microbiota-site.com/microbiota-2019-speakers.html here]</br></br>== Registration ==</br></br>:::: [https://www.microbiota-site.com/registrations.html Registration and more information]ns.html Registration and more information])
  • MiPschool London 2015  + (8<sup>th</sup> MiP''school'' on Mitochondrial Physiology, 2015 Apr 20-24, London, UK.)
  • SMRM2020 Virtual  + (8th Annual Meeting of the Society for Mitochondria Research and Medicine-India , Virtual.)
  • 8th SMRM and Mitochondria-Metabolism Network Meeting 2020 Pune IN  + (8th SMRM and Mitochondria-Metabolism Netwo8th SMRM and Mitochondria-Metabolism Network Meeting, Pune, India, 2020 </br></br></br>== General information == </br>:::: Flyer available for [https://www.mitoeagle.org/images/b/b2/8th_SMRM_and_Mitochondria-Metabolism_Network_Meeting_Poster.pdf download]</br></br>== Venue == </br>:::: Indian Institute of Science Education and Research (ISER Pune)</br>:::: Dr. Homi Bhabha Road</br>:::: Pashan, Pune 411 008</br>:::: INDIA</br>::::[http://www.iiserpune.ac.in/facilities/guesthouse-cum-convention-centre Hotel and Travel]</br></br>== Programme ==</br>:::: [https://indico.tifr.res.in/indico/internalPage.py?pageId=12&confId=7288 here]</br></br>== Speakers == </br>:::: List of speakers can be found [https://indico.tifr.res.in/indico/internalPage.py?pageId=0&confId=7288 here]</br></br>== Organizers ==</br>:::: The list of organizers can be found [https://indico.tifr.res.in/indico/internalPage.py?pageId=9&confId=7288 here]</br></br>== Registration ==</br>:::: [https://indico.tifr.res.in/indico/internalPage.py?pageId=6&confId=7288 Registration and more information]ageId=6&confId=7288 Registration and more information])
  • TriMAD Sysposium 2018 Pennsylvania US  + (8th Translational Research in Mitochondria8th Translational Research in Mitochondria, Aging, and Disease (TRiMAD) Symposium, Pennsylvania, United States, 2018 </br></br></br></br>== General information ==</br>:::: TRiMAD is a collaborative venture between The Pennsylvania State University, University of Pittsburgh Medical Center, The Children’s Hospital of Philadelphia (CHoP) Research Institute, and The University of Pennsylvania Perelman School of Medicine ([https://www.huck.psu.edu/node/15830 Website])</br></br>== Venue == </br>:::: The Pennsylvania State University</br>:::: 100 Huck Life Sciences Building</br>:::: University Park, Pennsylvania 16802</br>:::: [http://www.cvent.com/events/8th-regional-translational-research-in-mitochondria-aging-and-disease-symposium/directions-16730cf0fe2c47a1b79f1a3b9ab0b364.aspx directions]</br></br>== Organizers ==</br>:::: Kateryna Makova, PhD - Penn State, University Park</br>:::: Donna Korzick, PhD - Penn State, University Park</br></br>[[File:Image001.jpg|right|550px]]</br>== Programme ==</br>:::: Please find the programme [http://www.cvent.com/events/8th-regional-translational-research-in-mitochondria-aging-and-disease-symposium/agenda-16730cf0fe2c47a1b79f1a3b9ab0b364.aspx here]</br></br></br>== Registration ==</br>:::: [https://www.cvent.com/events/8th-regional-translational-research-in-mitochondria-aging-and-disease-symposium/registration-16730cf0fe2c47a1b79f1a3b9ab0b364.aspx?fqp=true Register here]</br> </br>== Lecturers and tutors ==</br></br>:::: The list of speakers can be found [http://www.cvent.com/events/8th-regional-translational-research-in-mitochondria-aging-and-disease-symposium/custom-18-16730cf0fe2c47a1b79f1a3b9ab0b364.aspx here]6730cf0fe2c47a1b79f1a3b9ab0b364.aspx here])