Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
No edit summary
Ā 
(339 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Gnaiger E (2023) Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3. https://doi.org/10.26124/mitofit:2023-0003
|title=Gnaiger E (2023) Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6 - ''' [[Gnaiger 2024 J Biol Chem |''Published 2023-11-22 J Biol Chem (2024)'']]
|info=MitoFit Preprints 2023.3. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system]<br/>
|info=MitoFit Preprints 2023.3.v6. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system]<br/>
|authors=Gnaiger Erich
|authors=Gnaiger Erich
|year=2023
|year=2023
|journal=MitoFit Prep
|journal=MitoFit Prep
|abstract=[[File:CII-ambiguities Graphical abstract.png|200px|left]]
|abstract=[[File:CII-ambiguities Graphical abstract.png|150px|left]]
The current narrative that the reduced coenzymes NADH and FADH<sub>2</sub> feed electrons from the tricarboxylic acid (TCA) cycle into the mitochondrial electron transfer system can create ambiguities around respiratory Complex CII. Succinate dehydrogenase or CII reduces FAD to FADH<sub>2</sub> in the canonical forward TCA cycle. However, some graphical representations of the membrane-bound electron transfer system (ETS) depict CII as the site of oxidation of FADH<sub>2</sub>. This leads to the false believe that FADH2 generated by electron transferring flavoprotein (CETF) in fatty acid oxidation and mitochondrial glycerophosphate dehydrogenase (CGpDH) feeds electrons into the ETS through CII. In reality, NADH and succinate produced in the TCA cycle are the substrates of Complexes CI and CII, respectively, and the reduced flavin groups FMNH<sub>2</sub> and FADH<sub>2</sub> are downstream products of CI and CII, respectively, carrying electrons from CI and CII into the Q-junction. Similarly, CETF and CGpDH feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature call for quality control, to secure scientific standards in current communications on bioenergetics and support adequate clinical applications.<br>
::: Gnaiger E (2024) Complex II ambiguities ā€• FADH<sub>2</sub> in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470
|keywords=coenzyme Q junction; Complex CII; electron transfer system; fatty acid oxidation; flavin adenine dinucleotide;
::: <small>Version 6 (v6) 2023-06-21 </small>
succinate dehydrogenase; tricarboxylic acid cycle
::: <small>Version 5 (v5) 2023-05-31, (v4) 2023-05-12, (v3) 2023-05-04, (v2) 2023-04-04, (v1) 2023-03-24 - [https://wiki.oroboros.at/index.php/File:Gnaiger_2023_MitoFit_CII.pdf Ā»Link to all versionsĀ«]</small>
The prevailing notion that reduced cofactors NADH and FADH<sub>2</sub> transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH<sub>2</sub> in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH<sub>2</sub> in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH<sub>2</sub> from the Ī²-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent '''[[ambiguity crisis]]''', complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
<br>
|keywords=[[coenzyme]]; [[cofactor]]; [[prosthetic group]]; coenzyme Q junction, Q-junction; Complex II, CII; [[H+-linked electron transfer |H<sup>+</sup>-linked electron transfer]]; [[electron transfer system]], ETS; [[matrix-ETS]]; [[membrane-ETS]]; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH<sub>2</sub>; nicotinamide adenine dinucleotide, NAD<sup>+</sup>/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA; [[substrate]]; [[Gibbs force]]
|mipnetlab=AT Innsbruck Oroboros
|mipnetlab=AT Innsbruck Oroboros
}}
}}
__TOC__
::::'''Ā» ''Links:''''' [[Ambiguity crisis]], [[Complex II ambiguities]], [[:Category:Ambiguity crisis - NAD and H+ |Complex I and hydrogen ion ambiguities in the electron transfer system]]
:::: '''Acknowledgements''': I thank [[Cardoso Luiza HD |Luiza H.D. Cardoso]], [[Schmitt Sabine |Sabine Schmitt]], and [[Donnelly Chris |Chris Donnelly]] for stimulating discussions, and [[Cocco Paolo |Paolo Cocco]] for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 ([[FAT4BRAIN]]).
== Additions to 312 references on CII-ambiguities after publication of JBC 2024 ==
Last update 2023-12-19
:::::: [[File:Bektas 2019 Aging (Albany NY) CORRECTION.png|400px|link=Bektas 2019 Aging (Albany NY)]]
:::: '''#1''' Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L (2019) Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. '''Aging (Albany NY)''' 11:9234-63. - [[Bektas 2019 Aging (Albany NY) |Ā»Bioblast linkĀ«]]


ORC'''ID''': [[File:ORCID.png|20px|link=https://orcid.org/0000-0003-3647-5895]] Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria


:::: '''Acknowledgements''': I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figure 1c. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).
:::::: [[File:Ben-Shachar 2009 J Neural Transm (Vienna) CORRECTION.png|400px|link=Ben-Shachar 2009 J Neural Transm (Vienna)]]
:::: '''#2''' Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. '''J Neural Transm (Vienna)''' 116:1383-96. - [[Ben-Shachar 2009 J Neural Transm (Vienna) |Ā»Bioblast linkĀ«]]
Ā 
Ā 
:::::: [[File:Bon 2022 J Clin Case Rep Stud CORRECTION.png|400px|link=Bon 2022 J Clin Case Rep Stud]]
:::: '''#3''' Bon E, Maksimovich NY, Dremza IK (2022) Alendronate-induced nephropathy. '''J Clin Case Rep Stud''' 3. - [[Bon 2022 J Clin Case Rep Stud |Ā»Bioblast linkĀ«]]
Ā 
Ā 
:::::: [[File:Elsaeed 2021 Medicine Updates CORRECTION.png|400px|link=Elsaeed 2021 Medicine Updates]]
:::: '''#4''' Elsaeed EM, Hamad A, Erfan OS, Elshahat M, Ebrahim F (2021) Role played by hippocampal apoptosis, autophagy and necroptosis in pathogenesis of diabetic cognitive dysfunction: a review of literature. '''Medicine Updates''' 6:41-63. - [[Elsaeed 2021 Medicine Updates |Ā»Bioblast linkĀ«]]
Ā 
Ā 
:::::: [[File:Facucho-Oliveira 2009 Stem Cell Rev Rep CORRECTION.png|400px|link=Facucho-Oliveira 2009 Stem Cell Rev Rep]]
:::: '''#5''' Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. '''Stem Cell Rev Rep''' 5:140-58. - [[Facucho-Oliveira 2009 Stem Cell Rev Rep |Ā»Bioblast linkĀ«]]
Ā 
Ā 
:::::: [[File:Iqbal 2014 Springer, New York CORRECTION.png|400px|link=Iqbal 2014 Springer, New York]]
:::: '''#6''' Iqbal T, Welsby PJ, Howarth FC, Bidasee K, Adeghate E, Singh J (2014) Effects of diabetes-induced hyperglycemia in the heart: biochemical and structural slterations. In: Turan B, Dhalla N (eds) Diabetic cardiomyopathy. Advances in biochemistry in health and disease 9. '''Springer''', New York. - [[Iqbal 2014 Springer, New York |Ā»Bioblast linkĀ«]]


__TOC__
=== Supplement Figure S1 ===


:::: '''Figure S1.''' Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.
:::::: [[File:Keogh 2015 Biochim Biophys Acta CORRECTION.png|400px|link=Keogh 2015 Biochim Biophys Acta]]
:::: '''#7''' Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. '''Biochim Biophys Acta''' 1847:1401-11. - [[Keogh 2015 Biochim Biophys Acta |Ā»Bioblast linkĀ«]]


:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - [[Arnold 2023 J Biol Chem |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|700px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::::: [[File:Kunst 2023 Biomedicines CORRECTION.png|400px|link=Kunst 2023 Biomedicines]]
:::: '''b''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. Front Biosci (Landmark Ed) 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |Ā»Bioblast linkĀ«]]
:::: '''#8''' Kunst C, Schmid S, Michalski M, TĆ¼men D, Buttenschƶn J, MĆ¼ller M, GĆ¼low K (2023) The influence of gut microbiota on oxidative stress and the immune system. '''Biomedicines''' 11:1388. - [[Kunst 2023 Biomedicines |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|500px|link=Billingham 2022 Nat Immunol]]
:::: '''c''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23:692-704. - [[Billingham 2022 Nat Immunol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|500px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::::: [[File:Lal 2018 Springer CORRECTION.png|400px|link=Lal 2018 Springer]]
:::: '''d''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |Ā»Bioblast linkĀ«]]
:::: '''#9''' Lal MA (2018) Respiration. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. '''Springer''', Singapore:253-314. - [[Lal 2018 Springer |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::: '''e''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::::: [[File:Lane 2000 Pediatr Res CORRECTION.png|400px|link=Lane 2000 Pediatr Res]]
:::: '''f''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |Ā»Bioblast linkĀ«]]
:::: '''#10''' Lane RH, Tsirka AE, Gruetzmacher EM (2000) Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats. '''Pediatr Res''' 47:792-7. - [[Lane 2000 Pediatr Res |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|500px|link=Turton 2022 Int J Mol Sci]]
:::: '''g''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - [[Turton 2022 Int J Mol Sci |Ā»Bioblast linkĀ«]]
<br>


:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]] Ā 
:::::: [[File:Palma 2023 Oncogene CORRECTION.png|400px|link=Palma 2023 Oncogene]]
:::: '''h''' Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |Ā»Bioblast linkĀ«]] Ā 
:::: '''#11''' Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG (2023) ROS production by mitochondria: function or dysfunction? '''Oncogene'''. - [[Palma 2023 Oncogene |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Yin 2021 FASEB J CORRECTION.png|500px|link=Yin 2021 FASEB J]]
:::: '''i''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - [[Yin 2021 FASEB J |Ā»Bioblast linkĀ«]]


:::::: [[File:Missaglia 2021 CORRECTION.png|500px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]] Ā 
:::::: [[File:Quintard 2018 Springer, Cham CORRECTION.png|400px|link=Quintard 2018 Springer, Cham]]
:::: '''j''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |Ā»Bioblast linkĀ«]] Ā 
:::: '''#12''' Quintard H, Fontaine E, Ichai C (2018) Energy metabolism: from the organ to the cell. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. '''Springer''', Cham. - [[Quintard 2018 Springer, Cham |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Read 2021 Redox Biol CORRECTION.png|500px|link=Read 2021 Redox Biol]]
:::: '''k''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 47:102164. - [[Read 2021 Redox Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|500px|link=Gasmi 2021 Arch Toxicol]]
:::::: [[File:Reiss 2022 Exp Gerontol CORRECTION.png|400px|link=Reiss 2022 Exp Gerontol]]
:::: '''l''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, BjĆørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - [[Gasmi 2021 Arch Toxicol |Ā»Bioblast linkĀ«]]
:::: '''#13''' Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J (2022) The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. '''Exp Gerontol''' 164:111828. - [[Reiss 2022 Exp Gerontol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::: '''m''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion on Orphan Drugs 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::::: [[File:Saghiv 2020 Springer, Cham CORRECTION.png|400px|link=Saghiv 2020 Springer, Cham]]
:::: '''n''' MartĆ­nez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - [[Martinez-Reyes 2020 Nat Commun |Ā»Bioblast linkĀ«]]
:::: '''#14''' Saghiv MS, Sagiv MS (2020) Metabolism. In: Basic Exercise Physiology. '''Springer''', Cham. - [[Saghiv 2020 Springer, Cham |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::: '''o''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - [[Raimondi 2020 Br J Cancer |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|500px|link=Risiglione 2020 Int J Mol Sci]]
:::::: [[File:SiouNing 2023 Molecules CORRECTION.png|400px|link=SiouNing 2023 Molecules]]
:::: '''p''' Risiglione P, Leggio L, Cubisino SAM, Reina S, PaternĆ² G, Marchetti B, MagrƬ A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. - [[Risiglione 2020 Int J Mol Sci |Ā»Bioblast linkĀ«]]
:::: '''#15''' SiouNing AS, Seong TS, Kondo H, Bhassu S (2023) MicroRNA regulation in infectious diseases and its potential as a biosensor in future aquaculture industry: a review. '''Molecules''' 28:4357. - [[SiouNing 2023 Molecules |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|500px|link=Nolfi-Donegan 2020 Redox Biol]]
:::: '''q''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|500px|link=Morelli 2019 Open Biol]]
:::::: [[File:St John 2012 Cell Tissue Res CORRECTION.png|400px|link=St John 2012 Cell Tissue Res]]
:::: '''r''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - [[Morelli 2019 Open Biol |Ā»Bioblast linkĀ«]]
:::: '''#16''' St John JC (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. '''Cell Tissue Res''' 349:795-808. - [[St John 2012 Cell Tissue Res |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Lewis 2019 CORRECTION.png|500px|link=Lewis 2019 Int J Mol Sci]]
:::: '''s''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - [[Lewis 2019 Int J Mol Sci |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|500px|link=Sarmah 2019 Transl Stroke Res]]
:::::: [[File:Su 2020 Mol Biol Rep CORRECTION.png|400px|link=Su 2020 Mol Biol Rep]]
:::: '''t''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |Ā»Bioblast linkĀ«]]
:::: '''#17''' Su J, Ye D, Gao C, Huang Q, Gui D (2020) Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. '''Mol Biol Rep''' 47:8023-35. - [[Su 2020 Mol Biol Rep |Ā»Bioblast linkĀ«]]


:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|300px|link=Yepez 2018 PLOS One]]
:::: '''u''' YĆ©pez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, KoňaÅ™Ć­kovĆ” E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - [[Yepez 2018 PLOS One |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::::: [[File:Thorgersen 2022 Front Microbiol CORRECTION.png|400px|link=Thorgersen 2022 Front Microbiol]]
:::: '''v''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932-41. - [[Fink 2018 J Biol Chem |Ā»Bioblast linkĀ«]]
:::: '''#18''' Thorgersen MP, Schut GJ, Poole FL 2nd, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW (2022) Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. '''Front Microbiol''' 13:965625. - [[Thorgersen 2022 Front Microbiol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::: '''w''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - [[Zhang 2018 Mil Med Res |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::::: [[File:Venkatachalam 2022 Cells CORRECTION.png|400px|link=Venkatachalam 2022 Cells]]
:::: '''x''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
:::: '''#19''' Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. '''Cells''' 11:1180. - [[Venkatachalam 2022 Cells |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::: '''y''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::::: [[File:Wall 2006 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Wall 2006 Am J Physiol Heart Circ Physiol]]
:::: '''z''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |Ā»Bioblast linkĀ«]]
:::: '''#20''' Wall JA, Wei J, Ly M, Belmont P, Martindale JJ, Tran D, Sun J, Chen WJ, Yu W, Oeller P, Briggs S, Gustafsson AB, Sayen MR, Gottlieb RA, Glembotski CC (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. '''Am J Physiol Heart Circ Physiol''' 291:H2462-72. - [[Wall 2006 Am J Physiol Heart Circ Physiol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::: '''Ī±''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid Ī²-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::::: [[File:Wang 2017 Am J Reprod Immunol CORRECTION.png|400px|link=Wang 2017 Am J Reprod Immunol]]
:::: '''Ī²''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - [[DeBerardinis 2016 Sci Adv |Ā»Bioblast linkĀ«]]
:::: '''#21''' Wang T, Zhang M, Jiang Z, Seli E (2017) Mitochondrial dysfunction and ovarian aging. '''Am J Reprod Immunol''' 77. - [[Wang 2017 Am J Reprod Immunol |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::: '''Ī³''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid Ī²-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |Ā»Bioblast linkĀ«]]
<br>
:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::: '''Ī“''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|400px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::::: [[File:Wider 2023 Crit Care CORRECTION.png|400px|link=Wider 2023 Crit Care]]
:::: '''Īµ, Ī¶''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |Ā»Bioblast linkĀ«]]
:::: '''#22''' Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, Oā€™Neil B, Neumar RW, Przyklenk K, HĆ¼ttemann M, Sanderson TH (2023) Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. '''Crit Care''' 27:491. - [[Wider 2023 Crit Care |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Benard 2011 Springer CORRECTION.png|500px|link=Benard 2011 Springer]]
:::: '''Ī·''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|500px|link=Nussbaum 2005 J Clin Invest]]
:::::: [[File:Wu 2022 Front Chem CORRECTION.png|400px|link=Wu 2022 Front Chem]]
:::: '''Ī˜''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - [[Nussbaum 2005 J Clin Invest |Ā»Bioblast linkĀ«]]
:::: '''#23''' Wu Y, Liu X, Wang Q, Han D, Lin S (2022) Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow. '''Front Chem''' 10:948453. - [[Wu 2022 Front Chem |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::: '''ĪÆ''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::::: [[File:Zapico 2013 Aging Dis CORRECTION.png|400px|link=Zapico 2013 Aging Dis]]
:::: '''Īŗ''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - [[Sanchez 2001 Br J Pharmacol |Ā»Bioblast linkĀ«]]
:::: '''#24''' Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. '''Aging Dis''' 4:364-80. - [[Zapico 2013 Aging Dis |Ā»Bioblast linkĀ«]]
<br>


:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::: '''Ī»''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - [[Brownlee 2001 Nature |Ā»Bioblast linkĀ«]]
:::: Ref. [34] Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. Webvision In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |Ā»Bioblast linkĀ«]]
<br>


=== Supplement Figure S2 ===
== Supplement: FADH<sub>2</sub> or FADH as substrate of CII in websites ==


:::: '''Figure S2'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer (retrieved 2023-03-21 to 2023-04-04)
:::: Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH ā†’ FAD+H ('''g'''), FADH<sub>2</sub> ā†’ FAD+2H<sup>+</sup> ('''aā€™''', '''c''', '''h-n'''), and FADH<sub>2</sub> ā†’ FAD ('''a''', '''b''', '''d-f''', '''o-Īø''') should be corrected to FADH<sub>2</sub> ā†’ FAD (Eq. 3b). NADH ā†’ NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH ā†’ NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH ā†’ NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> ā†’ NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH ā†’ NAD ('''Ī¹''') should be corrected to NADH+H<sup>+</sup> ā†’ NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).


:::::: [[File:OpenStax Biology.png|400px]]
:::::: [[File:OpenStax Biology.png|400px]]
:::: '''Website 1''': [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
::: ('''a''')
:::: '''Website 2''': [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
:::: '''Website 3''': [https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain LibreTexts Biology] Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
:::: '''Website 4''': [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 1
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 5''': [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.11
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 1
:::: '''Website 7''' ('''a'''): [https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain LibreTexts Biology] Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
:::: '''Website 8''' ('''a'''): [https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain Brooder]


:::::: [[File:Khan Academy modified from OpenStax CORRECTION.png|300px]]
:::::: [[File:Khan Academy modified from OpenStax CORRECTION.png|400px]]
:::: '''Website 6''': [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH<sub>2</sub>-error: "''FADH<sub>2</sub> .. feeds them ''(electrons)'' into the transport chain through complex II.''"
::: ('''aā€™''')
:::: '''Website 7''': [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 9''' ('''aā€™''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH<sub>2</sub>-error: "''FADH<sub>2</sub> .. feeds them ''(electrons)'' into the transport chain through complex II.''"
:::: '''Website 10''' ('''aā€™''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Jack Westin CORRECTION.png|400px]]
:::::: [[File:Expii OpenStax CORRECTION.png|400px]]
:::: '''Website 8''': [https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria Jack Westin MCAT Courses]
::: ('''b''')
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.12
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.13
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 3
:::: '''Website 9''' ('''aā€™''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
:::: '''Website 10''' ('''aā€™''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax


:::::: [[File:Expii OpenStax CORRECTION.png|300px]]
:::::: [[File:Biologydictionary.net CORRECTION.png|400px]]
:::: '''Website 1''': [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.12
::: ('''c''')
:::: '''Website 6''': [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 7''': [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 13''' ('''c'''): [https://commons.wikimedia.org/w/index.php?curid=30148497 wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19]
:::: '''Website 14''' ('''c'''): [https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/ biologydictionary.net 2018-08-21]
:::: '''Website 15''' ('''c'''): [https://www.quora.com/Why-does-FADH2-form-2-ATP Quora]
:::: '''Website 16''' ('''c'''): [https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/ TeachMePhysiology] - Fig. 1. 2023-03-13
:::: '''Website 17''' ('''c'''): [https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/ toppr]


:::::: [[File:Labxchange CORRECTION.png|400px]]
:::::: [[File:Labxchange CORRECTION.png|400px]]
:::: '''Website 10''': [https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1 Labxchange] - Figure 8.15 credit: modification of work by Klaus Hoffmeier
::: ('''d''')
:::: '''Website 18''' ('''d'''): [https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1 Labxchange] - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Ā 
:::::: [[File:Jack Westin CORRECTION.png|400px]]
::: ('''e''')
:::: '''Website 19''' ('''e'''): [https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria Jack Westin MCAT Courses]


:::::: [[File:Biologydictionary.net CORRECTION.png|400px]]
:::::: [[File:Videodelivery CORRECTION.png|400px]]
:::: '''Website 4''': [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 3
::: ('''f''')
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - By OpenStax College CC BY 3.0, via Wikimedia Commons
:::: '''Website 20''' ('''f'''): [https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.jpg videodelivery]
:::: '''Website 11''': [https://commons.wikimedia.org/w/index.php?curid=30148497 wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19]
Ā 
:::: '''Website 12''': [https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/ biologydictionary.net 2018-08-21]
:::::: [[File:SparkNotes CORRECTION.png|400px]]
:::: '''Website 13''': [https://www.quora.com/Why-does-FADH2-form-2-ATP Quora]
::: ('''g''')
:::: '''Website 14''': [https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/ TeachMePhysiology] - Fig. 1. 2023-03-13
:::: '''Website 21''' ('''g'''): [https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/ - SparkNotes]
:::: '''Website 15''': [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo]
:::: '''Website 16''': [https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/ toppr]


:::::: [[File:Researchtweet CORRECTION.png|400px]]
:::::: [[File:Researchtweet CORRECTION.png|400px]]
:::: '''Website 17''': [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
::: ('''h''')
:::: '''Website 18''': [https://microbenotes.com/electron-transport-chain/ Microbe Notes]
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 23''' ('''h'''): [https://microbenotes.com/electron-transport-chain/ Microbe Notes]
Ā 
:::::: [[File:FlexBooks 2 0 CORRECTION.png|400px]]
::: ('''i''')
:::: '''Website 24''' ('''i'''): [https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/ FlexBooks] - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Ā 
:::::: [[File:Labster Theory CORRECTION.png|400px]]
::: ('''j''')
:::: '''Website 25''' ('''j'''): [https://theory.labster.com/Electron_Transport_Chain/ Labster Theory]


:::::: [[File:BiochemDen CORRECTION.png|400px]]
:::::: [[File:Nau.edu CORRECTION.png|400px]]
:::: '''Website 19''': [https://biochemden.com/electron-transport-chain-mechanism/ BiochemDen.com]
::: ('''k''')
:::: '''Website 26''' ('''k'''): [https://www2.nau.edu/~fpm/bio205/u4fg36.html nau.edu]
Ā 
:::::: [[File:ScienceFacts CORRECTION.png|400px]]
::: ('''l''')
:::: '''Website 27''' ('''l'''): [https://www.sciencefacts.net/electron-transport-chain.html ScienceFacts]
Ā 
:::::: [[File:Ck12 CORRECTION.png|400px]]
::: ('''m''')
:::: '''Website 28''' ('''m'''): [https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/ cK-12]
Ā 
:::::: [[File:Wikimedia ETC CORRECTION.png|400px]]
::: ('''n''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 29''' ('''n'''): [https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png Wikimedia]
Ā 
:::::: [[File:Creative-biolabs CORRECTION.png|400px]]
::: ('''o''')
:::: '''Website 30''' ('''o'''): [https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm creative-biolabs]


:::::: [[File:Vector Mine CORRECTION.png|400px]]
:::::: [[File:Vector Mine CORRECTION.png|400px]]
:::: '''Website 20''': [https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232 dreamstime]
::: ('''p''')
:::: '''Website 21''': [https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/ VectorMine]
:::: '''Website 31''' ('''p'''): [https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232 dreamstime]
:::: '''Website 32''' ('''p'''): [https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/ VectorMine]
Ā 
:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
::: ('''q''')
:::: '''Website 33''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ YouTube Dirty Medicine Biochemistry] - Uploaded 2019-07-18


:::::: [[File:Creative-biolabs CORRECTION.png|400px]]
:::::: [[File:DBriers CORRECTION.png|400px]]
:::: '''Website 22''': [https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm creative-biolabs]
::: ('''r''')
:::: '''Website 34''' ('''r'''): [http://www.dbriers.com/tutorials/ DBriers]
Ā 
:::::: [[File:SNC1D CORRECTION.png|400px]]
::: ('''s''')
:::: '''Website 35''' ('''s'''): [https://sbi4uraft2014.weebly.com/electron-transport-chain.html SNC1D - BIOLOGY LESSON PLAN BLOG]
Ā 
:::::: [[File:ThoughtCo-Getty Images CORRECTION.png|400px]]
::: ('''t''')
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 36''' ('''t'''): [https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617 dreamstime]
Ā 
:::::: [[File:Hyperphysics CORRECTION.png|400px]]
::: ('''u''')
:::: '''Website 37''' ('''u'''): [http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html hyperphysics]


:::::: [[File:Khan Academy CORRECTION.png|400px]]
:::::: [[File:Khan Academy CORRECTION.png|400px]]
:::: '''Website 6''': [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy]
::: ('''v''')
:::: '''Website 7''': [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 9''' ('''aā€™''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy]
:::: '''Website 10''' ('''aā€™''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Expii-Whitney, Rolfes 2002 CORRECTION.png|400px]]
:::::: [[File:Expii-Whitney, Rolfes 2002 CORRECTION.png|400px]]
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Whitney, Rolfes 2002
::: ('''w''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Whitney, Rolfes 2002
Ā 
:::::: [[File:UrbanPro CORRECTION.png|400px]]
::: ('''x''')
:::: '''Website 38''' ('''x'''): [https://www.urbanpro.com/ba-tuition/oxidative-phosphorylation UrbanPro]
Ā 
:::::: [[File:Quizlet CORRECTION.png|400px]]
::: ('''y''')
:::: '''Website 39''' ('''y'''): [https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/ Quizlet]
Ā 
:::::: [[File:Unm.edu CORRECTION.png|400px]]
::: ('''z''')
:::: '''Website 40''' ('''z'''): [https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html unm.edu]


:::::: [[File:FlexBooks 2 0 CORRECTION.png|400px]]
:::::: [[File:YouTube sciencemusicvideos CORRECTION.png|400px]]
:::: '''Website 23''': [https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/ FlexBooks] - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
::: ('''Ī±''')
:::: '''Website 41''' ('''Ī±'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ YouTube sciencemusicvideos] - Uploaded 2014-08-19


:::::: [[File:Hyperphysics CORRECTION.png|400px]]
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''Website 24''': [http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html hyperphysics]
::: ('''Ī²''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''Ī²'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii] - Image source: By Gabi Slizewska


:::::: [[File:Labster Theory CORRECTION.png|400px]]
:::::: [[File:BiochemDen CORRECTION.png|400px]]
:::: '''Website 25''': [https://theory.labster.com/Electron_Transport_Chain/ Labster Theory]
::: ('''Ī³''')
:::: '''Website 42''' ('''Ī³'''): [https://biochemden.com/electron-transport-chain-mechanism/ BiochemDen.com]


:::::: [[File:Nau.edu CORRECTION.png|400px]]
:::::: [[File:Hopes CORRECTION.png|400px]]
:::: '''Website 26''': [https://www2.nau.edu/~fpm/bio205/u4fg36.html nau.edu]
:::('''Ī“''')
:::: '''Website 43''' ('''Ī“'''): [https://hopes.stanford.edu/riboflavin/ hopes, Huntingtonā€™s outreach project for education, at Stanford]


:::::: [[File:Quizlet CORRECTION.png|400px]]
:::::: [[File:Studocu CORRECTION.png|400px]]
:::: '''Website 27''': [https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/ Quizlet]
::: ('''Īµ''')
:::: '''Website 44''' ('''Īµ'''): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]


:::::: [[File:ScienceDirect CORRECTION.png|400px]]
:::::: [[File:ScienceDirect CORRECTION.png|400px]]
:::: '''Website 28''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Felectron-transport-chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&client=firefox-b-d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ ScienceDirect]
::: ('''Ī¶''')
:::: '''Website 45''' ('''Ī¶'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Felectron-transport-chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&client=firefox-b-d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ ScienceDirect]
Ā 
:::::: [[File:BBC BITESIZE CORRECTION.png|400px]]
::: ('''Ī·''')
:::: '''Website 46''' ('''Ī·'''): [https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5 BBC BITESIZE cK-12]
Ā 
:::::: [[File:Freepik CORRECTION.png|400px]]
::: ('''Īø''')
:::: '''Website 47''' ('''Īø'''): [https://www.freepik.com/premium-vector/oxidative-phosphorylation-process-electron-transport-chain-final-step-cellular-respiration_29211885.htm freepik]
Ā 
:::::: [[File:LibreTexts Chemistry_CORRECTION.png|400px]]
::: ('''Ī¹''')
:::: '''Website 48''' ('''Ī¹'''): [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3
Ā 
:::::: [[File:Stillway LW CORRECTION.png|300px]]
:::: '''xx''' Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: [https://doctorlib.info/medical/biochemistry/11.html Medical Biochemistry]
<br>


:::::: [[File:ScienceFacts CORRECTION.png|400px]]
:::: '''Website 29''': [https://www.sciencefacts.net/electron-transport-chain.html ScienceFacts]


:::::: [[File:SNC1D CORRECTION.png|400px]]
<big>'''from FAO and CII ambiguitiy to CII as a H<sup>+</sup> in websites'''</big>
:::: '''Website 30''': [https://sbi4uraft2014.weebly.com/electron-transport-chain.html SNC1D - BIOLOGY LESSON PLAN BLOG]


:::::: [[File:Unm.edu CORRECTION.png|400px]]
:::::: [[File:CHM333 LECTURES CORRECTION.png|250px]]
:::: '''Website 31''': [https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html unm.edu]
:::: '''xx''' [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna]
<br>


:::::: [[File:Wikimedia ETC CORRECTION.png|400px]]
(retrieved 2023-03-21 to 2023-05-02)
:::: '''Website 9''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - By User:Rozzychan CC BY-SA 2.5, via Wikimedia Commons
:::: '''Website 49''': [https://conductscience.com/electron-transport-chain/ Conduct Science]: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH<sub>2</sub> to FAD<sup>+</sup>. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH<sub>2</sub> is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH<sub>2</sub>.
:::: '''Website 32''': [https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png Wikimedia]


:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
:::: '''Website 50''': [https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-mitochondrial-functions/ The Medical Biochemistry Page]: ā€˜In addition to transferring electrons from the FADH<sub>2</sub> generated by SDH, complex II also accepts electrons from the FADH<sub>2</sub> generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttleā€™ (Figure 8d).
:::: '''Website 33''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ YouTube Dirty Medicine Biochemistry] - Uploaded 2019-07-18


:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
:::: '''Website 51''': [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna]: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.
:::: '''Website 34''': [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3


:::::: [[File:YouTube sciencemusicvideos CORRECTION.png|400px]]
:::: '''Website 35''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ YouTube sciencemusicvideos] - Uploaded 2014-08-19


:::::: [[File:ThoughtCo-Getty Images CORRECTION.png|400px]]
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''Website 15''': [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''xx''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii - Image source: By Gabi Slizewska]: ā€˜FADH<sub>2</sub> from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H<sup>+</sup> ions into the intermembrane space and passes off electronsā€™ (retrieved 2023-05-04).
:::: '''Website 17''': [https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617 dreamstime]


:::::: [[File:Ck12 CORRECTION.png|400px]]
:::::: [[File:BioNinja 1 CORRECTION.png|400px]]
:::: '''Website 36''': [https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/ cK-12]
:::::: [[File:BioNinja 2 CORRECTION.png|400px]]
:::: '''xx''': [https://ib.bioninja.com.au/higher-level/topic-8-metabolism-cell/untitled/electron-transport-chain.html BioNinja] (retrieved 2023-05-04).


{{Template:Keywords: Substrates and cofactors}}
== Cited by ==
{{Template:Cited by Gnaiger 2024 MitoFit}}
[[Category:Ambiguity crisis - CII and FADH2]]
{{Labeling
{{Labeling
|area=
|area=Patients, mt-Awareness
|injuries=
|enzymes=Complex II;succinate dehydrogenase
|organism=
|additional=Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN
|tissues=
|preparations=
|topics=
|instruments=
|additional=FAT4BRAIN
}}
}}

Latest revision as of 08:48, 1 May 2024

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6 - Published 2023-11-22 J Biol Chem (2024)

Ā» MitoFit Preprints 2023.3.v6.

MitoFit pdf

Complex II ambiguities ā€• FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Gnaiger E (2024) Complex II ambiguities ā€• FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470
Version 6 (v6) 2023-06-21
Version 5 (v5) 2023-05-31, (v4) 2023-05-12, (v3) 2023-05-04, (v2) 2023-04-04, (v1) 2023-03-24 - Ā»Link to all versionsĀ«

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the Ī²-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
ā€¢ Keywords: coenzyme; cofactor; prosthetic group; coenzyme Q junction, Q-junction; Complex II, CII; H+-linked electron transfer; electron transfer system, ETS; matrix-ETS; membrane-ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH2; nicotinamide adenine dinucleotide, NAD+/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA; substrate; Gibbs force

ā€¢ O2k-Network Lab: AT Innsbruck Oroboros

Ā» Links: Ambiguity crisis, Complex II ambiguities, Complex I and hydrogen ion ambiguities in the electron transfer system
Acknowledgements: I thank Luiza H.D. Cardoso, Sabine Schmitt, and Chris Donnelly for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Additions to 312 references on CII-ambiguities after publication of JBC 2024

Last update 2023-12-19
Bektas 2019 Aging (Albany NY) CORRECTION.png
#1 Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L (2019) Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY) 11:9234-63. - Ā»Bioblast linkĀ«


Ben-Shachar 2009 J Neural Transm (Vienna) CORRECTION.png
#2 Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm (Vienna) 116:1383-96. - Ā»Bioblast linkĀ«


Bon 2022 J Clin Case Rep Stud CORRECTION.png
#3 Bon E, Maksimovich NY, Dremza IK (2022) Alendronate-induced nephropathy. J Clin Case Rep Stud 3. - Ā»Bioblast linkĀ«


Elsaeed 2021 Medicine Updates CORRECTION.png
#4 Elsaeed EM, Hamad A, Erfan OS, Elshahat M, Ebrahim F (2021) Role played by hippocampal apoptosis, autophagy and necroptosis in pathogenesis of diabetic cognitive dysfunction: a review of literature. Medicine Updates 6:41-63. - Ā»Bioblast linkĀ«


Facucho-Oliveira 2009 Stem Cell Rev Rep CORRECTION.png
#5 Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140-58. - Ā»Bioblast linkĀ«


Iqbal 2014 Springer, New York CORRECTION.png
#6 Iqbal T, Welsby PJ, Howarth FC, Bidasee K, Adeghate E, Singh J (2014) Effects of diabetes-induced hyperglycemia in the heart: biochemical and structural slterations. In: Turan B, Dhalla N (eds) Diabetic cardiomyopathy. Advances in biochemistry in health and disease 9. Springer, New York. - Ā»Bioblast linkĀ«


Keogh 2015 Biochim Biophys Acta CORRECTION.png
#7 Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 1847:1401-11. - Ā»Bioblast linkĀ«


Kunst 2023 Biomedicines CORRECTION.png
#8 Kunst C, Schmid S, Michalski M, TĆ¼men D, Buttenschƶn J, MĆ¼ller M, GĆ¼low K (2023) The influence of gut microbiota on oxidative stress and the immune system. Biomedicines 11:1388. - Ā»Bioblast linkĀ«


Lal 2018 Springer CORRECTION.png
#9 Lal MA (2018) Respiration. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. Springer, Singapore:253-314. - Ā»Bioblast linkĀ«


Lane 2000 Pediatr Res CORRECTION.png
#10 Lane RH, Tsirka AE, Gruetzmacher EM (2000) Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats. Pediatr Res 47:792-7. - Ā»Bioblast linkĀ«


Palma 2023 Oncogene CORRECTION.png
#11 Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG (2023) ROS production by mitochondria: function or dysfunction? Oncogene. - Ā»Bioblast linkĀ«


Quintard 2018 Springer, Cham CORRECTION.png
#12 Quintard H, Fontaine E, Ichai C (2018) Energy metabolism: from the organ to the cell. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. - Ā»Bioblast linkĀ«


Reiss 2022 Exp Gerontol CORRECTION.png
#13 Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J (2022) The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 164:111828. - Ā»Bioblast linkĀ«


Saghiv 2020 Springer, Cham CORRECTION.png
#14 Saghiv MS, Sagiv MS (2020) Metabolism. In: Basic Exercise Physiology. Springer, Cham. - Ā»Bioblast linkĀ«


SiouNing 2023 Molecules CORRECTION.png
#15 SiouNing AS, Seong TS, Kondo H, Bhassu S (2023) MicroRNA regulation in infectious diseases and its potential as a biosensor in future aquaculture industry: a review. Molecules 28:4357. - Ā»Bioblast linkĀ«


St John 2012 Cell Tissue Res CORRECTION.png
#16 St John JC (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res 349:795-808. - Ā»Bioblast linkĀ«


Su 2020 Mol Biol Rep CORRECTION.png
#17 Su J, Ye D, Gao C, Huang Q, Gui D (2020) Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. Mol Biol Rep 47:8023-35. - Ā»Bioblast linkĀ«


Thorgersen 2022 Front Microbiol CORRECTION.png
#18 Thorgersen MP, Schut GJ, Poole FL 2nd, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW (2022) Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. Front Microbiol 13:965625. - Ā»Bioblast linkĀ«


Venkatachalam 2022 Cells CORRECTION.png
#19 Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11:1180. - Ā»Bioblast linkĀ«


Wall 2006 Am J Physiol Heart Circ Physiol CORRECTION.png
#20 Wall JA, Wei J, Ly M, Belmont P, Martindale JJ, Tran D, Sun J, Chen WJ, Yu W, Oeller P, Briggs S, Gustafsson AB, Sayen MR, Gottlieb RA, Glembotski CC (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. Am J Physiol Heart Circ Physiol 291:H2462-72. - Ā»Bioblast linkĀ«


Wang 2017 Am J Reprod Immunol CORRECTION.png
#21 Wang T, Zhang M, Jiang Z, Seli E (2017) Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol 77. - Ā»Bioblast linkĀ«


Wider 2023 Crit Care CORRECTION.png
#22 Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, Oā€™Neil B, Neumar RW, Przyklenk K, HĆ¼ttemann M, Sanderson TH (2023) Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. Crit Care 27:491. - Ā»Bioblast linkĀ«


Wu 2022 Front Chem CORRECTION.png
#23 Wu Y, Liu X, Wang Q, Han D, Lin S (2022) Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow. Front Chem 10:948453. - Ā»Bioblast linkĀ«


Zapico 2013 Aging Dis CORRECTION.png
#24 Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. Aging Dis 4:364-80. - Ā»Bioblast linkĀ«


Supplement: FADH2 or FADH as substrate of CII in websites

Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. FADH ā†’ FAD+H (g), FADH2 ā†’ FAD+2H+ (aā€™, c, h-n), and FADH2 ā†’ FAD (a, b, d-f, o-Īø) should be corrected to FADH2 ā†’ FAD (Eq. 3b). NADH ā†’ NAD+ is frequently written in graphs without showing the H+ on the left side of the arrow, except for (p-r). NADH ā†’ NAD++H+ (a-g, m), NADH ā†’ NAD++2H+ (h-l), NADH+H+ ā†’ NAD++2H+ (j, k), and NADH ā†’ NAD (Ī¹) should be corrected to NADH+H+ ā†’ NAD+ (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
OpenStax Biology.png
(a)
Website 1 (a,b): OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.11
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 1
Website 7 (a): LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 8 (a): - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
(aā€™)
Website 9 (aā€™,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 10 (aā€™,b,v): Saylor Academy
Expii OpenStax CORRECTION.png
(b)
Website 1 (a,b): OpenStax Biology - Fig. 7.12
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.13
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 3
Website 9 (aā€™,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 10 (aā€™,b,v): Saylor Academy
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Biologydictionary.net CORRECTION.png
(c)
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 13 (c): wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 14 (c): biologydictionary.net 2018-08-21
Website 15 (c): Quora
Website 16 (c): TeachMePhysiology - Fig. 1. 2023-03-13
Website 17 (c): toppr
Labxchange CORRECTION.png
(d)
Website 18 (d): Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Jack Westin CORRECTION.png
(e)
Website 19 (e): Jack Westin MCAT Courses
Videodelivery CORRECTION.png
(f)
Website 20 (f): videodelivery
SparkNotes CORRECTION.png
(g)
Website 21 (g): - SparkNotes
Researchtweet CORRECTION.png
(h)
Website 22 (h,t): researchtweet
Website 23 (h): Microbe Notes
FlexBooks 2 0 CORRECTION.png
(i)
Website 24 (i): FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Labster Theory CORRECTION.png
(j)
Website 25 (j): Labster Theory
Nau.edu CORRECTION.png
(k)
Website 26 (k): nau.edu
ScienceFacts CORRECTION.png
(l)
Website 27 (l): ScienceFacts
Ck12 CORRECTION.png
(m)
Website 28 (m): cK-12
Wikimedia ETC CORRECTION.png
(n)
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Website 29 (n): Wikimedia
Creative-biolabs CORRECTION.png
(o)
Website 30 (o): creative-biolabs
Vector Mine CORRECTION.png
(p)
Website 31 (p): dreamstime
Website 32 (p): VectorMine
YouTube Dirty Medicine Biochemistry CORRECTION.png
(q)
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
DBriers CORRECTION.png
(r)
Website 34 (r): DBriers
SNC1D CORRECTION.png
(s)
Website 35 (s): SNC1D - BIOLOGY LESSON PLAN BLOG
ThoughtCo-Getty Images CORRECTION.png
(t)
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 22 (h,t): researchtweet
Website 36 (t): dreamstime
Hyperphysics CORRECTION.png
(u)
Website 37 (u): hyperphysics
Khan Academy CORRECTION.png
(v)
Website 9 (aā€™,b,v): Khan Academy
Website 10 (aā€™,b,v): Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
(w)
Website 11 (b,c,n,w,Ī²): expii - Whitney, Rolfes 2002
UrbanPro CORRECTION.png
(x)
Website 38 (x): UrbanPro
Quizlet CORRECTION.png
(y)
Website 39 (y): Quizlet
Unm.edu CORRECTION.png
(z)
Website 40 (z): unm.edu
YouTube sciencemusicvideos CORRECTION.png
(Ī±)
Website 41 (Ī±): YouTube sciencemusicvideos - Uploaded 2014-08-19
Expii-Gabi Slizewska CORRECTION.png
(Ī²)
Website 11 (b,c,n,w,Ī²): expii expii - Image source: By Gabi Slizewska
BiochemDen CORRECTION.png
(Ī³)
Website 42 (Ī³): BiochemDen.com
Hopes CORRECTION.png
(Ī“)
Website 43 (Ī“): hopes, Huntingtonā€™s outreach project for education, at Stanford
Studocu CORRECTION.png
(Īµ)
Website 44 (Īµ): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
ScienceDirect CORRECTION.png
(Ī¶)
Website 45 (Ī¶): ScienceDirect
BBC BITESIZE CORRECTION.png
(Ī·)
Website 46 (Ī·): BBC BITESIZE cK-12
Freepik CORRECTION.png
(Īø)
Website 47 (Īø): freepik
LibreTexts Chemistry CORRECTION.png
(Ī¹)
Website 48 (Ī¹): - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3
Stillway LW CORRECTION.png
xx Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: Medical Biochemistry



from FAO and CII ambiguitiy to CII as a H+ in websites

CHM333 LECTURES CORRECTION.png
xx CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna


(retrieved 2023-03-21 to 2023-05-02)
Website 49: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Website 50: The Medical Biochemistry Page: ā€˜In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttleā€™ (Figure 8d).
Website 51: CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


Expii-Gabi Slizewska CORRECTION.png
xx: expii expii - Image source: By Gabi Slizewska: ā€˜FADH2 from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H+ ions into the intermembrane space and passes off electronsā€™ (retrieved 2023-05-04).
BioNinja 1 CORRECTION.png
BioNinja 2 CORRECTION.png
xx: BioNinja (retrieved 2023-05-04).


Questions.jpg


Click to expand or collaps
Bioblast links: Substrates and cofactors - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Substrate
Ā» Substrate
Ā» Product
Ā» Substrates as electron donors
Ā» Cellular substrates
Ā» MitoPedia: Substrates and metabolites
Ā» Substrate-uncoupler-inhibitor titration
Cofactor
Ā» Cofactor
Ā» Coenzyme, cosubstrate
Ā» Nicotinamide adenine dinucleotide
Ā» Coenzyme Q2
Ā» Prosthetic group
Ā» Flavin adenine dinucleotide
Referennces
Ā» Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6


Cited by

Gnaiger 2024 Ambiguity crisis.jpg
Gnaiger E (2024) Addressing the ambiguity crisis in bioenergetics and thermodynamics. MitoFit Preprints 2024.3. https://doi.org/10.26124/mitofit:2024-0003


Labels: MiParea: Patients, mt-Awareness 



Enzyme: Complex II;succinate dehydrogenase 



Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.