Coenzyme Q2

From Bioblast
Jump to navigation Jump to search
Bioblasts - Richard Altmann and MiPArt by Odra Noel
MitoPedia     Terms and abbreviations     Preprints and history     MiP and biochemistry     Concepts and methods     MitoPedia: SUIT     MitoPedia: O2k



MitoPedia

Coenzyme Q2

Description

CoQ2

Coenzyme Q2 or ubiquinone-2 (CoQ2) is a quinone derivate composed of a benzoquinone ring with an isoprenoid side chain consisting of two isoprenoid groups, with two methoxy groups, and with one methyl group. In HRR it is used as a Q-mimetic to detect the redox changes of coenzyme Q at the Q-junction in conjunction with the Q-Module, since the naturally occurring long-chain coenzyme Q (e.g. CoQ10) is trapped within membrane boundaries. CoQ2 can react both with mitochondrial complexes (e.g. CI, CII and CIII) at their quinone-binding sites and with the detecting electrode.

Abbreviation: CoQ2; CoQ-2

Reference: Gnaiger 2020 BEC MitoPathways, MiPNet24.12 NextGen-O2k: Q-Module


Application in HRR

CoQ2 : Coenzyme Q2 (Sigma Aldrich, C8081, MW: 318.41; 2,3-Dimethoxy-5-methyl-6-geranyl-1,4-benzoquinone, Ubiquinone-2, oxidized form)
Caution: Light sensitive (store solution in a dark glass vial).
Preparation of 10 mM stock solution (dissolved in ethanol abs.) (to run cyclic voltammetry)
  1. Dissolve one commercial vial of CoQ2 (2 mg) in 628 µL ethanol abs.
  2. Divide into 50 µL aliquots in dark glass vials.
  3. Store frozen at -20 °C.


Preparation of 1 mM stock solution (to measure the Q-redox state)
  1. Dilute 50 µL of the 10 mM stock with 450 µL ethanol abs..
  2. Divide into 50 µL aliquots in dark glass vials.
  3. Store frozen at -20 °C.


O2k manual titrations MiPNet09.12 O2k-Titrations
Q-redox state
  • Titration volume: 2 µL of the 1 mM stock solution using a 10 µL syringe (2 mL O2k-chamber).
  • Final concentration: 1 µM CoQ2


Cyclic voltammetry
  • Titration volume: 6 µL of the 10 mM stock solution using a 10 µL syringe (2 mL O2k-chamber).
  • Final concentration: 30 µM CoQ2

Keywords


Questions.jpg


Click to expand or collaps
Bioblast links: Q - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>


Publications: Q-junction

 YearReferenceOrganismTissue;cellStressDiseases
Komlodi 2021 BEC Q2021-11-11Komlódi T, Cardoso LHD, Doerrier C, Moore AL, Rich PR, Gnaiger E (2021) Coupling and pathway control of coenzyme Q redox state and respiration in isolated mitochondria. Bioenerg Commun 2021.3. https://doi.org/10.26124/bec:2021-0003MouseHeart
Nervous system
Szibor 2019 Biochim Biophys Acta Bioenerg2019Szibor Marten, Gainutdinov Timur, Fernandez-Vizarra Erika, Dufour Eric, Gizatullina Zemfira, Debska-Vielhaber Grazyna, Heidler Juliana, Wittig Ilka, Viscomi Carlo, Gellerich Frank Norbert, Moore Anthony L (2019) Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: switch from RET and ROS to FET. Biochim Biophys Acta Bioenerg 1861:148137.MouseHeart
Lemieux 2019 bioRxiv2019Lemieux H, Subarsky P, Doblander C, Wurm M, Troppmair J, Gnaiger E (2019) Mitochondrial respiratory function as an early biomarker of apoptosis induced by growth factor removal. bioRxiv doi: https://doi.org/10.1101/151480 .MouseBlood cellsCell deathCancer
Cermakova 2019 Parasite2019Čermáková P, Kovalinka T, Ferenczyová K, Horváth A (2019) Coenzyme Q2 is a universal substrate for the measurement of respiratory chain enzyme activities in trypanosomatids. Parasite 26:17.
Osakai 2019 Electrochemistry2019Osakai T, Yamamoto T, Ueki M (2019) Directional electron transfer from ubiquinone-10 to cytochrome c at a biomimetic self-assembled monolayer modified electrode. Electrochemistry 87:59-64.
Takahashi 2019 Arch Biochem Biophys2019Takahashi T, Mine Y, Okamoto T (2019) Extracellular coenzyme Q10 (CoQ10) is reduced to ubiquinol-10 by intact Hep G2 cells independent of intracellular CoQ10 reduction. Arch Biochem Biophys 672:108067.
Spinazzi 2019 Proc Natl Acad Sci U S A2019Spinazzi M, Radaelli E, Horré K, Arranz AM, Gounko NV, Agostinis P, Maia TM, Impens F, Morais VA, Lopez-Lluch G, Serneels L, Navas P, De Strooper B (2019) PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc Natl Acad Sci U S A 116:277-86.MouseNervous systemNeurodegenerative
Martinez-Cifuentes 2017 Molecules2017Martínez-Cifuentes M, Salazar R, Ramírez-Rodríguez O, Weiss-López B, Araya-Maturana R (2017) Experimental and theoretical reduction potentials of some biologically active ortho-carbonyl para-quinones. Molecules 22:577.
Gulaboski 2016 J Solid State Electrochem2016Gulaboski R, Markovski V, Jihe Z (2016) Redox chemistry of coenzyme Q—a short overview of the voltammetric features. J Solid State Electrochem 20:3229–3238.
Acosta 2016 Biochim Biophys Acta2016Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857:1079-85.
Fragaki 2016 Biol Res2016Fragaki K, Chaussenot A, Benoist JF, Ait-El-Mkadem S, Bannwarth S, Rouzier C, Cochaud C, Paquis-Flucklinger V (2016) Coenzyme Q10 defects may be associated with a deficiency of Q10-independent mitochondrial respiratory chain complexes. Biol Res 49:4.
García-Corzo 2015 Biochim Biophys Acta2015García-Corzo L, Luna-Sánchez M, Doerrier C, Ortiz F, Escames G, Acuña-Castroviejo D, López LC (2015) Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta 1842:893-901.
Petrova 2014 Proc Chem2014Petrova EV, Korotkova EI, Kratochvil B, Voronova OA, Dorozhko EV, Bulycheva EV (2014) Investigation of coenzyme Q10 by voltammetry. Proc Chem 10:173-8. https://doi.org/10.1016/j.proche.2014.10.030.
Enriquez 2014 Mol Syndromol2014Enriquez JA, Lenaz G (2014) Coenzyme Q and the respiratory chain: coenzyme Q pool and mitochondrial supercomplexes. Mol Syndromol 5:119-40.Oxidative stress;RONS
La Guardia 2013 Front Physiol2013La Guardia PG, Alberici LC, Ravagnani FG, Catharino RR, Vercesi AE (2013) Protection of rat skeletal muscle fibers by either L-carnitine or coenzyme Q10 against statins toxicity mediated by mitochondrial reactive oxygen generation. Front Physiol 4:103.RatSkeletal muscleOxidative stress;RONS
Tang 2012 Methods Mol Biol2012Tang PH, Miles MV (2012) Measurement of oxidized and reduced coenzyme Q in biological fluids, cells, and tissues: an HPLC-EC method. Methods Mol Biol 837:149-68.
Song 2011 Free Radical Biol Med2011Song Y, Buettner GR (2011) Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radical Biol Med 919-62.Oxidative stress;RONS
Albury 2009 Physiol Plant2009Albury MS, Elliott C, Moore AL (2009) Towards a structural elucidation of the alternative oxidase in plants. Physiol Plant 137:316-27.
Ausili 2008 J Phys Chem B2008Ausili A, Torrecillas A, Aranda F, de Godos A, Sánchez-Bautista S, Corbalán-García S, Gómez-Fernández JC (2008) Redox state of coenzyme Q10 determines its membrane localization. J Phys Chem B 112:12696-702.
Lenaz 2007 Am J Physiol Cell Physiol2007Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221-39. doi: 10.1152/ajpcell.00263.2006.
Michalkiewicz 2007 Bioelectrochemistry2007Michalkiewicz S (2007) Cathodic reduction of coenzyme Q10 on glassy carbon electrode in acetic acid-acetonitrile solutions. Bioelectrochemistry 70:495-500.
Pich 2002 Free Radic Res2002Pich MM, Castagnoli A, Biondi A, Bernacchia A, Tazzari PL, D'Aurelio M, Castelli GP, Formiggini G, Conte R, Bovina C, Lenaz G (2002) Ubiquinol and a coenzyme Q reducing system protect platelet mitochondrial function of transfusional buffy coats from oxidative stress. Free Radic Res 36:429-36.Blood cells
Platelet
Oxidative stress;RONSAging;senescence
Affourtit 2001 J Biol Chem2001Affourtit C, Krab K, Leach GR, Whitehouse DG, Moore AL (2001) New insights into the regulation of plant succinate dehydrogenase. On the role of the protonmotive force. J Biol Chem 276:32567-74.
Cooley 2001 J Bacteriol2001Cooley JW, Vermaas WFJ (2001) Succinate Dehydrogenase and Other Respiratory Pathways in Thylakoid Membranes of Synechocystis sp. Strain PCC 6803: Capacity Comparisons and Physiological Function. J Bacteriol 183:4251-8.
Goetz 2000 J Neural Transm (Vienna)2000Götz ME, Gerstner A, Harth R, Dirr A, Janetzky B, Kuhn W, Riederer P, Gerlach M (2000) Altered redox state of platelet coenzyme Q10 in Parkinson's disease. J Neural Transm (Vienna) 107:41-8.
Affourtit 1999 J Biol Chem1999Affourtit C, Albury MS, Krab K, Moore AL (1999) Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe. J Biol Chem 274:6212-8.
Wagner 1998 Plant Physiol1998Wagner AM, Wagner MJ, Moore AL (1998) In vivo ubiquinone reduction levels during thermogenesis in araceae. Plant Physiol 117:1501-6.
Rauchova 1995 Physiol Res1995Rauchová H, Drahota Z, Lenaz G (1995) Function of coenzyme Q in the cell: some biochemical and physiological properties. Physiol Res 44:209-16.
Meunier 1995 Biochemistry1995Meunier B, Madgwick SA, Reil E, Oettmeier W, Rich PR (1995) New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry 34:1076-83.
Van den Bergen 1994 Eur J Biochem1994Van den Bergen CW, Wagner AM, Krab K, Moore AL (1994) The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways. Eur J Biochem 226:1071-8.
Moore 1991 Plant Physiol1991Moore AL, Dry IB, Wiskich JT (1991) Regulation of electron transport in plant mitochondria under state 4 conditions. Plant Physiol 95:34-40.
Day 1991 Plant Physiol1991Day DA, Dry IB, Soole KL, Wiskich JT, Moore AL (1991) Regulation of alternative pathway activity in plant mitochondria: deviations from Q-pool behavior during oxidation of NADH and quinols. Plant Physiol 95:948-53.
Zannoni 1990 FEBS Lett1990Zannoni D, Moore AL (1990) Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 271:123-7.
Dry 1989 Arch Biochem Biophys1989Dry IB, Moore AL, Day DA, Wiskich JT (1989) Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys 273:148-57.
Moore 1988 FEBS Letters1988Moore AL, Dry IB, Wiskich TJ (1988) Measurement of the redox state of the ubiquinone pool in plant mitochondria. FEBS Lett 235(1-2):76-80.Plants
Ragan 1985 Biochim Biophys Acta1985Ragan CI, Cottingham IR (1985) The kinetics of quinone pools in electron transport. Biochim Biophys Acta 811:13-31.
Rich 1984 Biochim Biophys Acta1984Rich PR (1984) Electron and proton transfers through quinones and cytochrome bc complexes. Biochim Biophys Acta 768:53-79.
Rich 1979 FEBS Lett1979Rich PR, Bendall DS (1979) A mechanism for the reduction of cytochromes by quinols in solution and its relevance to biological electron transfer reactions. FEBS Lett 105:189-94.
Mitchell 1979 Science1979Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206:1148-59.
Mitchell 1975 FEBS Letters1975Mitchell P (1975) The protonmotive Q cycle: A general formulation. FEBS Lett 59:137-9.
Kroeger 1973 Eur J Biochem1973Kröger A, Klingenberg M (1973) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358-68.BovinesHeart
Kroeger 1973b Eur J Biochem1973Kröger A, Klingenberg M (1973) Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313-23.BovinesHeart
Gutman 1972 FEBS Lett1972Gutman M, Silman N (1972) Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles. FEBS Lett 26:207-10. doi: 10.1016/0014-5793(72)80574-x.
Gutman 1971 Biochemistry1971Gutman M, Coles CJ, Singer TP, Casida JE (1971) On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction. Biochemistry 10:2036-43.
Ernster 1969 Eur J Biochem1969Ernster L, Lee IY, Norling B, Persson B (1969) Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Eur J Biochem 9:299-310.BovinesHeart
Mitchell 2011 Biochim Biophys Acta1966Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta Bioenergetics 1807 (2011):1507-38.
Kroeger 1966 Biochem Z1966Kröger A, Klingenberg M (1966) On the role of ubiquinone in mitochondria. II. Redox reactions of ubiquinone under the control of oxidative phosphorylation. Biochem Z 344:317-36.BovinesHeart


Abstracts: Q-junction
 YearReferenceOrganismTissue;cellStressDiseases
Ravasz 2019 Abstract IOC1412019Ravasz D, Bui D, Kitayev A, Greenwood B, Hill C, Komlodi T, Doerrier C, Ozohanics O, Moore AL, Gnaiger E, Kiebish M, Kolev K, Seyfried TN, Willis WT, Narain N, Adam-Vizi V, Chinopoulos C (2019) Endogenous quinones sustain a moderate NADH oxidation by Complex I during anoxia. Mitochondr Physiol Network 24.02.MouseLiver
Komlodi 2018b EBEC20182018Endogenous quinones sustain NADH oxidation by Complex I during anoxia, supporting substrate-level phosphorylation in mouse liver mitochondria.MouseLiverPermeability transition
Oxidative stress;RONS
Komlodi 2018 EBEC20182018Electron supply to the Q-junction: assessment of mitochondrial respiration, H2O2 flux and the redox state of the Q-pool.MouseNervous systemOxidative stress;RONS
Ravasz 2018 Abstract The evolving concept of mitochondria2018Vast pools of endogenous quinones sustain NADH oxidation by Complex I during anoxia, supporting substrate-level phosphorylation in mouse liver mitochondria.MouseLiverOther
Komlodi 2018 AussieMit2018Komlodi T, Hunger M, Moore AL, Gnaiger E (2018) Electron transfer at the Q-junction: new perspectives from combined measurement of mitochondrial O2 flux, H2O2 flux, and coenzyme Q redox state. AussieMit 2018 Melbourne AU.MouseNervous system
Komlodi 2017 MiPschool Obergurgl2017
Timea Komlodi
Electron pressure exerted by convergent succinate- and glycerophosphate-pathways to the Q-junction regulate reversed electron transfer to Complex I and H2O2 production.
MouseNervous systemOxidative stress;RONS
Moore 2017 MiPschool Obergurgl2017
Anthony Moore
The electron transfer-pathway – Q redox regulation and mitochondrial pathways to oxygen.