Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
 
(176 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Gnaiger E (2023) Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6
|title=Gnaiger E (2023) Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6 - ''' [[Gnaiger 2024 J Biol Chem |''Published 2023-11-22 J Biol Chem (2024)'']]
|info=MitoFit Preprints 2023.3.v6. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system]<br/>
|info=MitoFit Preprints 2023.3.v6. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system]<br/>
|authors=Gnaiger Erich
|authors=Gnaiger Erich
|year=2023
|year=2023
|journal=MitoFit Prep
|journal=MitoFit Prep
|abstract=[[File:CII-ambiguities Graphical abstract.png|200px|left]]
|abstract=[[File:CII-ambiguities Graphical abstract.png|150px|left]]
::: '''Version 6 (v6) 2023-06-21''' [https://wiki.oroboros.at/images/a/ae/Gnaiger_2023_MitoFit_CII.pdf 10.26124/mitofit:2023-0003.v6]
::: Gnaiger E (2024) Complex II ambiguities ― FADH<sub>2</sub> in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470
::: <small>Version 5 (v5) 2023-05-31 </small>
::: <small>Version 6 (v6) 2023-06-21 </small>
::: <small>Version 4 (v4) 2023-05-12 </small>
::: <small>Version 5 (v5) 2023-05-31, (v4) 2023-05-12, (v3) 2023-05-04, (v2) 2023-04-04, (v1) 2023-03-24 - [https://wiki.oroboros.at/index.php/File:Gnaiger_2023_MitoFit_CII.pdf »Link to all versions«]</small>
::: <small>Version 3 (v3) 2023-05-04 </small>
::: <small>Version 2 (v2) 2023-04-04 </small>
::: <small>Version 1 (v1) 2023-03-24 - [https://wiki.oroboros.at/index.php/File:Gnaiger_2023_MitoFit_CII.pdf »Link to all versions«]</small>
The prevailing notion that reduced cofactors NADH and FADH<sub>2</sub> transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH<sub>2</sub> in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH<sub>2</sub> in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH<sub>2</sub> from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent '''[[ambiguity crisis]]''', complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
The prevailing notion that reduced cofactors NADH and FADH<sub>2</sub> transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH<sub>2</sub> in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH<sub>2</sub> in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH<sub>2</sub> from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent '''[[ambiguity crisis]]''', complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
<br>
<br>
|keywords=coenzyme Q junction, Q-junction; Complex II, CII; electron transfer system, ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH<sub>2</sub>; nicotinamide adenine dinucleotide, NAD<sup>+</sup>/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA
|keywords=[[coenzyme]]; [[cofactor]]; [[prosthetic group]]; coenzyme Q junction, Q-junction; Complex II, CII; [[H+-linked electron transfer |H<sup>+</sup>-linked electron transfer]]; [[electron transfer system]], ETS; [[matrix-ETS]]; [[membrane-ETS]]; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH<sub>2</sub>; nicotinamide adenine dinucleotide, NAD<sup>+</sup>/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA; [[substrate]]; [[Gibbs force]]
|mipnetlab=AT Innsbruck Oroboros
|mipnetlab=AT Innsbruck Oroboros
}}
}}
ORC'''ID''': [[File:ORCID.png|20px|link=https://orcid.org/0000-0003-3647-5895]] Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria
__TOC__
__TOC__
[[File:N-S FADH2-FMNH2.png|right|500px]]
::::'''» ''Links:''''' [[Ambiguity crisis]], [[Complex II ambiguities]], [[:Category:Ambiguity crisis - NAD and H+ |Complex I and hydrogen ion ambiguities in the electron transfer system]]
'''Figure 1. Complex II (SDH) bridges H+-linked electron transfer from the TCA cycle (matrix-ETS) to the electron transfer system (membrane-ETS) of the mt-inner membrane (mtIM).''' '''(a)''' NADH+H<sup>+</sup> and '''(b)''' succinate are substrates of 2{H<sup>+</sup>+e<sup>-</sup>} transfer to CI and CII, respectively, with prosthetic groups FMN and FAD as the corresponding electron acceptors. '''(c)''' Symbolic representation of ETS pathway architecture. Electron flow converges at the N-junction (NAD<sup>+</sup> → NADH+H<sup>+</sup>). Electron flow from NADH and succinate S converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome ''c'' and in CIV to molecular O<sub>2</sub>, 2{H<sup>+</sup>+e<sup>-</sup>}+0.5 O<sub>2</sub> ⇢ H<sub>2</sub>O. '''(d)''' NADH+H<sup>+</sup> and NAD<sup>+</sup> cycle between matrix-dehydrogenases and CI, whereas FAD and FADH<sub>2</sub> cycle permanently bound within the same enzyme CII. Succinate and fumarate indicate the chemical entities irrespective of ionization, but charges are shown in NADH, NAD<sup>+</sup>, and H<sup>+</sup>. Joint pairs of half-circular arrows distinguish electron transfer 2{H<sup>+</sup>+e­<sup>-</sup>} to CI and CII from vectorial H<sup>+</sup> translocation across the mtIM (H<sup>+</sup><sub>neg</sub> → H<sup>+</sup><sub>pos</sub>). CI and CIII pump hydrogen ions from the negatively (neg) to the positively charged compartment (pos). '''(e)''' Iconic representation of SDH subunits. SDHA catalyzes the oxidation succinate → fumarate + 2{H<sup>+</sup>+e<sup>-</sup>} and reduction FAD + 2{H<sup>+</sup>+e<sup>-</sup>} → FADH<sub>2</sub> in the soluble domain of CII. The iron–sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH<sub>2</sub> in SDHC and SDHD.
:::: '''Acknowledgements''': I thank [[Cardoso Luiza HD |Luiza H.D. Cardoso]], [[Schmitt Sabine |Sabine Schmitt]], and [[Donnelly Chris |Chris Donnelly]] for stimulating discussions, and [[Cocco Paolo |Paolo Cocco]] for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 ([[FAT4BRAIN]]).
 
[[File:FAO.png|right|600px]]
'''Figure 4. Fatty acid oxidation''' through the β-oxidation cycle (β-ox), the multi-enzyme electron transferring flavoprotein Complex (CETF, ETF:ETFDH; see text), and Complex I (CI) with convergent electron transfer into the Q-junction.
 
:::: '''Acknowledgements''': I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).
 
== Supplement 1. Footnotes on terminology ==
 
:::* [[Coenzyme]]:
::::: ‘The dissociable, low-relative-molecular-mass active group of an enzyme which transfers chemical groups, hydrogen, or electrons. A coenzyme binds with its associated protein (apoenzyme) to form the active enzyme (holoenzyme) (Burtis, Geary 1994). ‘A low-molecular-weight, non-protein organic compound participating in enzymatic reactions as dissociable acceptor or donor of chemical groups or electrons’ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:23354 (CHEBI:23354, retrieved 2023-06-21). A coenzyme or cosubstrate is a cofactor that is attached loosely and transiently to an enzyme. NADH is listed as a coenzyme, which should be regarded as a substrate of pyridine-linked dehydrogenases (Lehninger 1975).
 
:::* [[Cofactor]]:
::::: A cofactor is 'an organic molecule or ion (usually a metal ion) that is required by an enzyme for its activity. It may be attached either loosely (coenzyme) or tightly (prosthetic group)' - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=23357 (CHEBI:23357, retrieved 2023-06-21).
 
:::* [[Electron transfer system]] ETS:
::::: The ''convergent'' architecture of the electron transfer ''system'' is emphasized in contrast to ''linear'' electron transfer ''chains'' ETCs within segments of the ETS.
 
:::* Electron transfer:
::::: A distinction is necessary between electron transfer in redox reactions and electron transport (translocation) in the diffusion of charged ionic species within or between cellular compartments. The symbol 2{H<sup>+</sup>+e<sup>−</sup>} is introduced to indicate H<sup>+</sup>-linked electron transfer of two hydrogen ions and two electrons in a redox reaction.
 
:::* Gibbs force:
::::: In contrast to the extensive quantity Gibbs energy [J], Gibbs force [J·mol<sup>-1</sup>] is an intensive quantity expressed as the partial derivative of Gibbs energy [J] per advancement of a reaction [mol] (Gnaiger 1993; 2020).
 
:::* H<sup>+</sup>-linked electron transfer:
::::: The term H<sup>+</sup>-coupled electron transfer ([[Hsu 2022 J Chem Phys |Hsu et al 2022]]) is replaced by H<sup><sup>+</sup></sup>-linked electron transfer, to avoid confusion with ''coupled'' H<sup>+</sup> translocation.
 
:::* Matrix-ETS:
::::: Electron transfer and corresponding OXPHOS capacities are classically studied in mitochondrial preparations as oxygen consumption supported by various fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; [[BEC_2020.1_doi10.26124bec2020-0001.v1 |Gnaiger et al 2020]]).
 
:::* Membrane-ETS:
::::: Electron transfer is frequently considered as the segment of redox reactions linked to the mtIM. However, the membrane-ETS is only part of the total ETS, which includes the upstream matrix-ETS.
 
:::* Misinformation:
::::: Misinformation is the mistaken sharing of the same content ([[Wardle 2023 Issues Sci Technol |Wardle 2023]]).
 
:::* [[Prosthetic group]]:
::::: A prosthetic group is a cofactor that is ‘a tightly bound, specific nonpolypeptide unit in a protein determining and involved in its biological activity’ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:26348 (CHEBI:26348, retrieved 2023-06-21). A prosthetic group is attached permanently and tightly or even covalently to an enzyme and that is regenerated in each enzymatic turnover. FAD is the prosthetic group of flavin-linked dehydrogenases, covalently bound to CII.
 
:::* [[Substrate]]:
::::: A substrate in a chemical reaction has a negative stoichiometric number since it is consumed, whereas a product has a positive stoichiometric number since it is produced. The general definition of a substrate in an enzyme-catalized reaction relies on the definition of the chemical reaction, without restriction to the nature of the substrate, i.e. independent of the substrate being a chemical entity in solution or a loosely bound cosubstrate (coenzyme) or even a tightly bound prosthetic group. The latter may be explicitly distinguished as a bound (internal) substrate from a free (external) substrate. Even different substrate pools may coexist (CoQ).
 
:::* 2{H<sup>+</sup>+e<sup>-</sup>}
::::: In H<sup>+</sup>-linked two-electron transfer, 2H<sup>+</sup> + 2e<sup>-</sup>, ‘the terms reducing equivalents or electron equivalents are used to refer to electrons and/or hydrogen atoms participating in oxidoreductions’ (Lehninger 1975). The symbol 2[H] is frequently used to distinguish reducing equivalents in the transfer from hydrogen donors to hydrogen acceptors from aqueous H<sup>+</sup>. Acid-base reactions obtain equilibrium fast without catalyst, whereas the slow oxidation-reduction reactions require an enzyme to proceed. However, 2[H] does not explicitly express that it applies to both electron and hydrogen ion transfer. Brackets are avoided to exclude the confusion with amount-of-substance concentrations frequently indicated by brackets. H<sup>+</sup>-linked two-electron transfer 2{H<sup>+</sup>+e<sup>-</sup>} is distinguished from single-electron transfer {H<sup>+</sup>}+{e<sup>-</sup>}.
 
 
== Beyond version 6 ==
''Last update: 2023-09-16''
 
::: <big>'''From CGpDH to FADH<sub>2</sub> to CII?'''</big>
 
[[File:Blanco 2017 Academic Press CORRECTION.png|300px|link=Blanco 2017 Academic Press]] <big><big>///</big></big> [[File:Willson 2022 Blood CORRECTION.png|300px|link=Willson 2022 Blood]]  <big><big>///</big></big>  [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|300px|link=Rai 2022 G3 (Bethesda)]] <big><big>///</big></big> [[File:Koopman 2016 Nat Protoc CORRECTION.png|300px|link=Koopman 2016 Nat Protoc]]
:::: ''Comment'' ([[Cardoso Luiza]], [[Gnaiger Erich]], 2023-08-06):
'''Fig. 9.19 from [[Blanco 2017 Academic Press| Blanco, Blanco (2017)]]''', '''Fig. 1 from [[Willson 2022 Blood| Willson et al (2022)]]''', and '''Fig. 1 from [[Rai 2022 G3 (Bethesda)| Rai et al (2022)]]''' show FADH<sub>2</sub> <span style="color:red">(1)</span> to be formed in the mitochondrial matrix from <span style="color:red">GPDH</span>, GPD2, or <span style="color:red">GPO1</span> (all indicating [[CGpDH]]) and from the TCA cycle ('''Fig. 1 [[Rai 2022 G3 (Bethesda)| Rai et al (2022)]]'''), then <span style="color:red">(2)</span> feeding electrons further '<span style="color:red">To respiratory chain</span>', the 'ETC', or 'Electron Transport Chain' ([[ETS]]). Combined with FADH<sub>2</sub> shown <span style="color:red">(1)</span> to be formed in the mt-matrix from the TCA cycle and <span style="color:red">(2)</span> feeding into CII ('''Fig. 1 from [[Koopman 2016 Nat Protoc| Koopman et al (2016)]]'''; among >120 examples discussed as CII-[[Ambiguity crisis |ambiguities]]), one may arrive at the erroneous conclusion on a direct role of CII in the oxidation of glycerophosphate, analogous to false representations of CII involved in fatty acid oxidation.
 
<big>'''Addition to Figure 5: FAO and CII ambiguitiy'''</big>
 
:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|250px|link=Frangos 2023 J Biol Chem]]
:::: '''xx''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
<br>
 
:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|250px|link=Ma 2018 Cancer Lett]]
:::: '''xx''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
<br>
 
:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|250px|link=Ma 2020 Sci Rep]]
:::: '''xx''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
<br>
 
:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::: '''xx''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
<br>
 
:::::: [[File:Picard 2018 Biol Psychiatry CORRECTION.png|250px|link=Picard 2018 Biol Psychiatry]]
:::: '''xx''' Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. '''Psychosom Med''' 80:141-53. - [[Picard 2018 Psychosom Med |»Bioblast link«]]
:::: '''xx''' Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES (2018) A mitochondrial health index sensitive to mood and caregiving stress. '''Biol Psychiatry''' 84:9-17. - [[Picard 2018 Biol Psychiatry |»Bioblast link«]]
:::: '''xx''' Karan KR, Trumpff C, McGill MA, Thomas JE, Sturm G, Lauriola V, Sloan RP, Rohleder N, Kaufman BA, Marsland AL, Picard M (2020) Mitochondrial respiratory capacity modulates LPS-induced inflammatory signatures in human blood. '''Brain Behav Immun Health''' 5:100080. - [[Karan 2020 Brain Behav Immun Health |»Bioblast link«]]
:::: '''xx''' Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M (2021) Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. '''Sci Rep''' 11:11595. - [[Bindra 2021 Sci Rep |»Bioblast link«]]
:::: '''xx''' Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M (2021) Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. '''Elife''' 10:e70899. - [[Rausser 2021 Elife |»Bioblast link«]]
<br>
 
<big>'''Additions to Supplements'''</big>
 
:::::: [[File:Achreja 2022 Nat Metab CORRECTION.png|400px|link=Achreja 2022 Nat Metab]]
:::: '''xx''' Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. '''Nat Metab''' 4:1119-37. - [[Achreja 2022 Nat Metab |»Bioblast link«]]
<br>
 
:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::: '''xx''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
<br>
 
:::::: [[File:Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png|400px|link=Bellance 2009 Front Biosci (Landmark Ed)]]
:::: '''xx''' Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. '''Front Biosci (Landmark Ed)''' 14:4015-34. - [[Bellance 2009 Front Biosci (Landmark Ed) |»Bioblast link«]]
<br>
 
:::::: [[File:Bernardo 2013 Biol Chem CORRECTION.png|400px|link=Bernardo 2013 Biol Chem]]
:::: '''xx''' Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. '''Biol Chem''' 394:1607-14. - [[Bernardo 2013 Biol Chem |»Bioblast link«]]
<br>
 
:::::: [[File:Begriche 2011 J Hepatol CORRECTION.png|250px|link=Begriche 2011 J Hepatol]]
:::: '''xx''' Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. '''J Hepatol''' 54:773-94. - [[Begriche 2011 J Hepatol |»Bioblast link«]]
<br>
 
:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
:::: '''xx''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
<br>
 
:::::: [[File:Catania 2019 Orphanet J Rare Dis CORRECTION.png|400px|link=Catania 2019 Orphanet J Rare Dis]]
:::: '''xx''' Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. '''Orphanet J Rare Dis''' 14:236. - [[Catania 2019 Orphanet J Rare Dis |»Bioblast link«]]
<br>
 
:::::: [[File:Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png|250px|link=Chang 2023 Front Endocrinol (Lausanne)]]
:::: '''xx''' Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. '''Front Endocrinol (Lausanne)''' 14:1106544. - [[Chang 2023 Front Endocrinol (Lausanne) |»Bioblast link«]]
<br>
 
:::::: [[File:Chinopoulos 2013 J Neurosci Res CORRECTION.png|400px|link=Chinopoulos 2013 J Neurosci Res]]
:::: '''xx''' Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. '''J Neurosci Res''' 91:1030-43. - [[Chinopoulos 2013 J Neurosci Res |»Bioblast link«]]
<br>
 
:::::: [[File:Connolly 2018 Cell Death Differ CORRECTION.png|400px|link=Connolly 2018 Cell Death Differ]]
:::: '''xx''' Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. '''Cell Death Differ''' 25:542-72. - [[Connolly 2018 Cell Death Differ |»Bioblast link«]]
<br>
 
:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::: '''xx''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
<br>
 
:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::: '''xx''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
<br>
 
:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::: '''xx''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
<br>
 
:::::: [[File:Ekbal 2013 Chest CORRECTION.png|400px|link=Ekbal 2013 Chest]]
:::: '''xx''' Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. '''Chest''' 143:1799-1808. - [[Ekbal 2013 Chest |»Bioblast link«]]
<br>
 
:::::: [[File:Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png|250px|link=Ezeani 2020 Front Biosci (Schol Ed)]]
:::: '''xx''' Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. '''Front Biosci (Schol Ed)''' 12:200-21. - [[Ezeani 2020 Front Biosci (Schol Ed) |»Bioblast link«]]
<br>
 
:::::: [[File:Fogg 2011 Chin J Cancer CORRECTION.png|250px|link=Fogg 2011 Chin J Cancer]]
:::: '''xx''' Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. '''Chin J Cancer''' 30:526-39. - [[Fogg 2011 Chin J Cancer |»Bioblast link«]]
<br>
 
:::::: [[File:Forbes 2018 Nat Rev Nephrol CORRECTION.png|250px|link=Forbes 2018 Nat Rev Nephrol]]
:::: '''xx''' Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. '''Nat Rev Nephrol''' 14:291-312. - [[Forbes 2018 Nat Rev Nephrol |»Bioblast link«]]
<br>
 
:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|250px|link=Frangos 2023 J Biol Chem]]
:::: '''xx''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
<br>
 
:::::: [[File:Gao 2022 EBioMedicine CORRECTION.png|250px|link=Gao 2022 EBioMedicine]]
:::: '''xx''' Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. '''EBioMedicine''' 83:104215. - [[Gao 2022 EBioMedicine |»Bioblast link«]]
<br>
 
:::::: [[File:Garcia-Neto 2017 PLOS ONE CORRECTION.png|400px|link=Garcia-Neto 2017 PLOS ONE]]
:::: '''xx''' Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in ''Debaryomyces Hansenii''. '''PLOS ONE''' 12:e0169621.  - [[Garcia-Neto 2017 PLOS ONE |»Bioblast link«]]
<br>
 
:::::: [[File:Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Giachin 2021 Angew Chem Int Ed Engl]]
:::: '''xx''' Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. '''Angew Chem Int Ed Engl''' 60:4689-97. - [[Giachin 2021 Angew Chem Int Ed Engl |»Bioblast link«]]
<br>
 
:::::: [[File:Intlekofer 2019 Nat Metab CORRECTION.png|250px|link=Intlekofer 2019 Nat Metab]]
:::: '''xx''' Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. '''Nat Metab''' 1:177-88. - [[Intlekofer 2019 Nat Metab |»Bioblast link«]]
<br>
 
:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::: '''xx''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
<br>
 
:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::: '''xx''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
<br>
 
:::::: [[File:Klimova 2008 Cell Death Differ CORRECTION.png|400px|link=Klimova 2008 Cell Death Differ]]
:::: '''xx''' Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. '''Cell Death Differ''' 15:660-6. - [[Klimova 2008 Cell Death Differ |»Bioblast link«]]
<br>
 
:::::: [[File:Koopman 2016 Nat Protoc CORRECTION.png|400px|link=Koopman 2016 Nat Protoc]]
:::: '''xx''' Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in ''Caenorhabditis elegans''. '''Nat Protoc''' 11:1798-816. - [[Koopman 2016 Nat Protoc |»Bioblast link«]]
<br>
 
:::::: [[File:Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Kuznetsov 2022 Antioxidants (Basel)]]
:::: '''xx''' Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. '''Antioxidants (Basel)''' 11:1995. - [[Kuznetsov 2022 Antioxidants (Basel) |»Bioblast link«]]
<br>


:::::: [[File:Lettieri-Barbato 2019 Mol Metab CORRECTION.png|400px|link=Lettieri-Barbato 2019 Mol Metab]]
== Additions to 312 references on CII-ambiguities after publication of JBC 2024 ==
:::: '''xx''' Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. '''Mol Metab''' 25:11-9. - [[Lettieri-Barbato 2019 Mol Metab |»Bioblast link«]]
Last update 2023-12-19
<br>
:::::: [[File:Bektas 2019 Aging (Albany NY) CORRECTION.png|400px|link=Bektas 2019 Aging (Albany NY)]]
:::: '''#1''' Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L (2019) Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. '''Aging (Albany NY)''' 11:9234-63. - [[Bektas 2019 Aging (Albany NY) |»Bioblast link«]]


:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::: '''xx''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
<br>


:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::::: [[File:Ben-Shachar 2009 J Neural Transm (Vienna) CORRECTION.png|400px|link=Ben-Shachar 2009 J Neural Transm (Vienna)]]
:::: '''xx''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
:::: '''#2''' Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. '''J Neural Transm (Vienna)''' 116:1383-96. - [[Ben-Shachar 2009 J Neural Transm (Vienna) |»Bioblast link«]]
<br>


:::::: [[File:Liu 2023 Int J Biol Sci CORRECTION.png|400px|link=Liu 2023 Int J Biol Sci]]
:::: '''xx''' Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. '''Int J Biol Sci''' 19:897-915. - [[Liu 2023 Int J Biol Sci |»Bioblast link«]]
<br>


:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::::: [[File:Bon 2022 J Clin Case Rep Stud CORRECTION.png|400px|link=Bon 2022 J Clin Case Rep Stud]]
:::: '''xx''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
:::: '''#3''' Bon E, Maksimovich NY, Dremza IK (2022) Alendronate-induced nephropathy. '''J Clin Case Rep Stud''' 3. - [[Bon 2022 J Clin Case Rep Stud |»Bioblast link«]]
<br>


:::::: [[File:Luo 2015 J Diabetes Res CORRECTION.png|400px|link=Luo 2015 J Diabetes Res]]
:::: '''xx''' Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. '''J Diabetes Res''' 2015:512618. - [[Luo 2015 J Diabetes Res |»Bioblast link«]]
<br>


:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|250px|link=Ma 2018 Cancer Lett]]
:::::: [[File:Elsaeed 2021 Medicine Updates CORRECTION.png|400px|link=Elsaeed 2021 Medicine Updates]]
:::: '''xx''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
:::: '''#4''' Elsaeed EM, Hamad A, Erfan OS, Elshahat M, Ebrahim F (2021) Role played by hippocampal apoptosis, autophagy and necroptosis in pathogenesis of diabetic cognitive dysfunction: a review of literature. '''Medicine Updates''' 6:41-63. - [[Elsaeed 2021 Medicine Updates |»Bioblast link«]]
<br>


:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|250px|link=Ma 2020 Sci Rep]]
:::: '''xx''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
<br>


:::::: [[File:Madamanchi 2007 Circ Res CORRECTION.png|400px|link=Madamanchi 2007 Circ Res]]
:::::: [[File:Facucho-Oliveira 2009 Stem Cell Rev Rep CORRECTION.png|400px|link=Facucho-Oliveira 2009 Stem Cell Rev Rep]]
:::: '''xx''' Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. '''Circ Res''' 100:460-73. - [[Madamanchi 2007 Circ Res |»Bioblast link«]]
:::: '''#5''' Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. '''Stem Cell Rev Rep''' 5:140-58. - [[Facucho-Oliveira 2009 Stem Cell Rev Rep |»Bioblast link«]]
<br>


:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::: '''xx''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
<br>


:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::::: [[File:Iqbal 2014 Springer, New York CORRECTION.png|400px|link=Iqbal 2014 Springer, New York]]
:::: '''xx''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
:::: '''#6''' Iqbal T, Welsby PJ, Howarth FC, Bidasee K, Adeghate E, Singh J (2014) Effects of diabetes-induced hyperglycemia in the heart: biochemical and structural slterations. In: Turan B, Dhalla N (eds) Diabetic cardiomyopathy. Advances in biochemistry in health and disease 9. '''Springer''', New York. - [[Iqbal 2014 Springer, New York |»Bioblast link«]]
<br>


:::::: [[File:Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png|400px|link=Mathiyazakan 2023 Antimicrob Agents Chemother]]
:::: '''xx''' Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome ''bcc:aa''3 supercomplex and a novel inhibitor targeting subunit cytochrome ''c''I. '''Antimicrob Agents Chemother''' 67:e0153122. - [[Mathiyazakan 2023 Antimicrob Agents Chemother |»Bioblast link«]]
<br>


:::::: [[File:Merlin 2021 Nat Metab CORRECTION.png|300px|link=Merlin 2021 Nat Metab]]
:::::: [[File:Keogh 2015 Biochim Biophys Acta CORRECTION.png|400px|link=Keogh 2015 Biochim Biophys Acta]]
:::: '''xx''' Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. '''Nat Metab''' 3:1313-26. - [[Merlin 2021 Nat Metab |»Bioblast link«]]
:::: '''#7''' Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. '''Biochim Biophys Acta''' 1847:1401-11. - [[Keogh 2015 Biochim Biophys Acta |»Bioblast link«]]
<br>


:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|300px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::: '''xx''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
<br>


:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::::: [[File:Kunst 2023 Biomedicines CORRECTION.png|400px|link=Kunst 2023 Biomedicines]]
:::: '''xx''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''#8''' Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K (2023) The influence of gut microbiota on oxidative stress and the immune system. '''Biomedicines''' 11:1388. - [[Kunst 2023 Biomedicines |»Bioblast link«]]
<br>


:::::: [[File:Mracek 2013 Biochim Biophys Acta CORRECTION.png|400px|link=Mracek 2013 Biochim Biophys Acta]]
:::: '''xx''' Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. '''Biochim Biophys Acta''' 1827:401-10. - [[Mracek 2013 Biochim Biophys Acta |»Bioblast link«]]
<br>


:::::: [[File:Pharaoh 2023 Geroscience CORRECTION.png|400px|link=Pharaoh 2023 Geroscience]]
:::::: [[File:Lal 2018 Springer CORRECTION.png|400px|link=Lal 2018 Springer]]
:::: '''xx''' Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). '''Geroscience''' https://doi.org/10.1007/s11357-023-00861-y - [[Pharaoh 2023 Geroscience |»Bioblast link«]]
:::: '''#9''' Lal MA (2018) Respiration. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. '''Springer''', Singapore:253-314. - [[Lal 2018 Springer |»Bioblast link«]]
<br>


:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::: '''xx''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
<br>


:::::: [[File:Protti 2006 Crit Care CORRECTION.png|400px|link=Protti 2006 Crit Care]]
:::::: [[File:Lane 2000 Pediatr Res CORRECTION.png|400px|link=Lane 2000 Pediatr Res]]
:::: '''xx''' Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. '''Crit Care''' 10:228. - [[Protti 2006 Crit Care |»Bioblast link«]]
:::: '''#10''' Lane RH, Tsirka AE, Gruetzmacher EM (2000) Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats. '''Pediatr Res''' 47:792-7. - [[Lane 2000 Pediatr Res |»Bioblast link«]]
<br>


:::::: [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|400px|link=Rai 2022 G3 (Bethesda)]]
:::: '''xx''' Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. '''G3 (Bethesda)''' 12:jkac115. - [[Rai 2022 G3 (Bethesda) |»Bioblast link«]]
<br>


:::::: [[File:Sadri 2023 Function (Oxf) CORRECTION.png|400px|link=Sadri 2023 Function (Oxf)]]
:::::: [[File:Palma 2023 Oncogene CORRECTION.png|400px|link=Palma 2023 Oncogene]]
:::: '''xx''' Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. '''Function (Oxf)''' 4:zqad038. - [[Sadri 2023 Function (Oxf) |»Bioblast link«]]
:::: '''#11''' Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG (2023) ROS production by mitochondria: function or dysfunction? '''Oncogene'''. - [[Palma 2023 Oncogene |»Bioblast link«]]
<br>


:::::: [[File:Scandella 2023 Trends Endocrinol Metab CORRECTION.png|400px|link=Scandella 2023 Trends Endocrinol Metab]]
:::: '''xx''' Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. '''Trends Endocrinol Metab''' 34:446-61. - [[Scandella 2023 Trends Endocrinol Metab |»Bioblast link«]]
<br>


:::::: [[File:Shu 2023 Front Immunol CORRECTION.png|400px|link=Shu 2023 Front Immunol]]
:::::: [[File:Quintard 2018 Springer, Cham CORRECTION.png|400px|link=Quintard 2018 Springer, Cham]]
:::: '''xx''' Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. '''Front Immunol''' 14:1199233. - [[Shu 2023 Front Immunol |»Bioblast link«]]
:::: '''#12''' Quintard H, Fontaine E, Ichai C (2018) Energy metabolism: from the organ to the cell. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. '''Springer''', Cham. - [[Quintard 2018 Springer, Cham |»Bioblast link«]]
<br>


:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::: '''xx''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
<br>


:::::: [[File:Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Smith 2023 Nat Rev Mol Cell Biol]]
:::::: [[File:Reiss 2022 Exp Gerontol CORRECTION.png|400px|link=Reiss 2022 Exp Gerontol]]
:::: '''xx''' Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. '''Nat Rev Mol Cell Biol''' 24:607-32. - [[Smith 2023 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''#13''' Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J (2022) The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. '''Exp Gerontol''' 164:111828. - [[Reiss 2022 Exp Gerontol |»Bioblast link«]]
<br>


:::::: [[File:Sommer 2020 Sci Adv CORRECTION.png|400px|link=Sommer 2020 Sci Adv]]
:::: '''xx''' Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. '''Sci Adv''' 6:eaba0694. - [[Sommer 2020 Sci Adv |»Bioblast link«]]
<br>


:::::: [[File:Spinelli 2018 Nat Cell Biol CORRECTION.png|400px|link=Spinelli 2018 Nat Cell Biol]]
:::::: [[File:Saghiv 2020 Springer, Cham CORRECTION.png|400px|link=Saghiv 2020 Springer, Cham]]
:::: '''xx''' Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. '''Nat Cell Biol''' 20:745-54. - [[Spinelli 2018 Nat Cell Biol |»Bioblast link«]]
:::: '''#14''' Saghiv MS, Sagiv MS (2020) Metabolism. In: Basic Exercise Physiology. '''Springer''', Cham. - [[Saghiv 2020 Springer, Cham |»Bioblast link«]]
<br>


:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::: '''xx''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
<br>


:::::: [[File:Tang 2014 Front Physiol CORRECTION.png|400px|link=Tang 2014 Front Physiol]]
:::::: [[File:SiouNing 2023 Molecules CORRECTION.png|400px|link=SiouNing 2023 Molecules]]
:::: '''xx''' Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. '''Front Physiol''' 5:175. - [[Tang 2014 Front Physiol |»Bioblast link«]]
:::: '''#15''' SiouNing AS, Seong TS, Kondo H, Bhassu S (2023) MicroRNA regulation in infectious diseases and its potential as a biosensor in future aquaculture industry: a review. '''Molecules''' 28:4357. - [[SiouNing 2023 Molecules |»Bioblast link«]]
<br>


:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
<br>


:::::: [[File:Vayalil 2019 Oncol Lett CORRECTION.png|400px|link=Vayalil 2019 Oncol Lett]]
:::::: [[File:St John 2012 Cell Tissue Res CORRECTION.png|400px|link=St John 2012 Cell Tissue Res]]
:::: '''xx''' Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. '''Oncol Lett''' 18:4367-76. - [[Vayalil 2019 Oncol Lett |»Bioblast link«]]
:::: '''#16''' St John JC (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. '''Cell Tissue Res''' 349:795-808. - [[St John 2012 Cell Tissue Res |»Bioblast link«]]
<br>


:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::: '''xx''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS , Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. https://doi.org/10.1017/9781108918978.034 - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
<br>


:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::::: [[File:Su 2020 Mol Biol Rep CORRECTION.png|400px|link=Su 2020 Mol Biol Rep]]
:::: '''xx''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
:::: '''#17''' Su J, Ye D, Gao C, Huang Q, Gui D (2020) Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. '''Mol Biol Rep''' 47:8023-35. - [[Su 2020 Mol Biol Rep |»Bioblast link«]]
<br>


:::: '''Add to Supplement 7'''


:::::: [[File:Stillway LW CORRECTION.png|300px]]
:::::: [[File:Thorgersen 2022 Front Microbiol CORRECTION.png|400px|link=Thorgersen 2022 Front Microbiol]]
:::: '''xx''' Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: [https://doctorlib.info/medical/biochemistry/11.html Medical Biochemistry]
:::: '''#18''' Thorgersen MP, Schut GJ, Poole FL 2nd, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW (2022) Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. '''Front Microbiol''' 13:965625. - [[Thorgersen 2022 Front Microbiol |»Bioblast link«]]
<br>


::: '''Beyond preprint'''


:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::::: [[File:Venkatachalam 2022 Cells CORRECTION.png|400px|link=Venkatachalam 2022 Cells]]
:::: '''1''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::: '''#19''' Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. '''Cells''' 11:1180. - [[Venkatachalam 2022 Cells |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>


:::::: [[File:Lancaster 2002 Biochim Biophys Acta.png|300px|link=Lancaster 2002 Biochim Biophys Acta]] [[File:Lancaster 2001 FEBS Lett CORRECTION.png|300px|link=Lancaster 2001 FEBS Lett]]
:::: '''2''' Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. '''Biochim Biophys Acta''' 1553:1-6. - [[Lancaster 2002 Biochim Biophys Acta |»Bioblast link«]]
:::::: fumarate + 2H<sup>+</sup> shown besides NADH + H<sup>+</sup> is ambiguous.
:::: '''3''' Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. '''FEBS Lett''' 504:133-41. - [[Lancaster 2001 FEBS Lett |»Bioblast link«]]
<br>


== Supplement 2. FAD a substrate of SDH and FADH<sub>2</sub> a substrate of CII ==
:::::: [[File:Wall 2006 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Wall 2006 Am J Physiol Heart Circ Physiol]]
:::: '''#20''' Wall JA, Wei J, Ly M, Belmont P, Martindale JJ, Tran D, Sun J, Chen WJ, Yu W, Oeller P, Briggs S, Gustafsson AB, Sayen MR, Gottlieb RA, Glembotski CC (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. '''Am J Physiol Heart Circ Physiol''' 291:H2462-72. - [[Wall 2006 Am J Physiol Heart Circ Physiol |»Bioblast link«]]


:::: '''Figure S2'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. The TCA cycle reduces FAD to FADH<sub>2</sub> - in several cases shown to be catalyzed by SDH. Then FADH<sub>2</sub> is erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 2001 to 2023.
<br>


:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::::: [[File:Wang 2017 Am J Reprod Immunol CORRECTION.png|400px|link=Wang 2017 Am J Reprod Immunol]]
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |»Bioblast link«]]
:::: '''#21''' Wang T, Zhang M, Jiang Z, Seli E (2017) Mitochondrial dysfunction and ovarian aging. '''Am J Reprod Immunol''' 77. - [[Wang 2017 Am J Reprod Immunol |»Bioblast link«]]
<br>


:::::: [[File:Bansal 2019 Academic Press CORRECTED.png|400px|link=Bansal 2019 Academic Press]]
:::: '''b''' Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Bansal 2019 Academic Press |»Bioblast link«]]
<br>


:::::: [[File:Beier 2015 FASEB J CORRECTION.png|300px|link=Beier 2015 FASEB J]]
:::::: [[File:Wider 2023 Crit Care CORRECTION.png|400px|link=Wider 2023 Crit Care]]
:::: '''c''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
:::: '''#22''' Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, O’Neil B, Neumar RW, Przyklenk K, Hüttemann M, Sanderson TH (2023) Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. '''Crit Care''' 27:491. - [[Wider 2023 Crit Care |»Bioblast link«]]
<br>


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''g''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]]
:::: '''d,e''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |»Bioblast link«]]
<br>
:::::: [[File:Cortez-Pinto 2009 J Hepatol CORRECTION.png|400px|link=Cortez-Pinto 2009 J Hepatol]]
:::: '''h''' Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. '''J Hepatol''' 50:857-60. - [[Cortez-Pinto 2009 J Hepatol |»Bioblast link«]]
<br>
:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::: '''l''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia |»Bioblast link«]]
<br>
:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::: '''f''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |»Bioblast link«]]
<br>
:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::: '''i''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |»Bioblast link«]]
<br>
:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::: '''j''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
<br>
:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''l''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::: '''k''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. '''Exp Biol Med (Maywood)''' 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |»Bioblast link«]]
<br>
:::::: [[File:Ishii 2012 Front Oncol CORRECTION.png|400px|link=Ishii 2012 Front Oncol]]
:::: '''m''' Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. '''Front Oncol''' 2:137. - [[Ishii 2012 Front Oncol |»Bioblast link«]]
<br>
:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::: '''n''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. '''Elsevier''' In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |»Bioblast link«]]
<br>


:::::: [[File:Lewis 2019 CORRECTION.png|400px|link=Lewis 2019 Int J Mol Sci]]
:::::: [[File:Wu 2022 Front Chem CORRECTION.png|400px|link=Wu 2022 Front Chem]]
:::: '''o''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. '''Int J Mol Sci''' 20:5271. - [[Lewis 2019 Int J Mol Sci |»Bioblast link«]]
:::: '''#23''' Wu Y, Liu X, Wang Q, Han D, Lin S (2022) Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow. '''Front Chem''' 10:948453. - [[Wu 2022 Front Chem |»Bioblast link«]]
<br>


:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::: '''p''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
<br>


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::::: [[File:Zapico 2013 Aging Dis CORRECTION.png|400px|link=Zapico 2013 Aging Dis]]
:::: '''q''' Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |»Bioblast link«]]
:::: '''#24''' Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. '''Aging Dis''' 4:364-80. - [[Zapico 2013 Aging Dis |»Bioblast link«]]
<br>


:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]]
:::: '''r''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |»Bioblast link«]]
<br>


:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
== Supplement: FADH<sub>2</sub> or FADH as substrate of CII in websites ==
:::: '''s''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |»Bioblast link«]]
<br>


:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::: Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H ('''g'''), FADH<sub>2</sub> → FAD+2H<sup>+</sup> ('''a’''', '''c''', '''h-n'''), and FADH<sub>2</sub> → FAD ('''a''', '''b''', '''d-f''', '''o-θ''') should be corrected to FADH<sub>2</sub> → FAD (Eq. 3b). NADH → NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH → NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH → NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> → NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH → NAD ('''ι''') should be corrected to NADH+H<sup>+</sup> → NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
:::: '''t''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |»Bioblast link«]]
<br>
 
:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::: '''u''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |»Bioblast link«]]
<br>
 
:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::: '''w''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |»Bioblast link«]]
<br>
 
:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::: '''v''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. '''Mech Ageing Dev''' 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |»Bioblast link«]]
<br>
 
:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::: '''x''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |»Bioblast link«]]
<br>
 
 
== Supplement 3. FADH<sub>2</sub> a substrate of CII ==
 
:::: '''Figure S3'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Alphabetical sequence of publications from 2001 to 2023.
 
:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::: '''a''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
<br>
 
:::::: [[File:Bao 2021 Cells CORRECTION.png|400px|link=Bao 2021 Cells]]
:::: '''b''' Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. '''Cells''' 10:1715. - [[Bao 2021 Cells |»Bioblast link«]]
<br>
 
:::::: [[File:Benard 2011 Springer CORRECTION.png|400px|link=Benard 2011 Springer]]
:::: '''c''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
<br>
 
:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::: '''d''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
<br>
 
:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::: '''e''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
<br>
 
:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|400px|link=Billingham 2022 Nat Immunol]]
:::: '''f''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. '''Nat Immunol''' 23:692-704. - [[Billingham 2022 Nat Immunol |»Bioblast link«]]
<br>
 
:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::: '''g''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. '''Nature''' 14:813-20. - [[Brownlee 2001 Nature |»Bioblast link«]]
:::::: Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
<br>
 
:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::: '''h''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
<br>
 
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''i''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
 
:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|400px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::: '''j''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
<br>
 
:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::: '''k''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. '''Oxid Med Cell Longev''' 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |»Bioblast link«]]
<br>
 
:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::: '''m''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. '''Adv Exp Med Biol''' 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Delport 2017 Metab Brain Dis CORRECTION.png|400px|link=Delport 2017 Metab Brain Dis]]
:::: '''n''' Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. '''Metab Brain Dis''' 32:1357-82. - [[Delport 2017 Metab Brain Dis |»Bioblast link«]]
<br>
 
:::::: [[File:Escoll 2019 Immunometabolism CORRECTION.png|400px|link=Escoll 2019 Immunometabolism]]
:::: '''o''' Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. '''Immunometabolism''' 1:e190011. - [[Escoll 2019 Immunometabolism |»Bioblast link«]]
<br>
 
:::::: [[File:Eyenga 2022 Cells CORRECTION.png|400px|link=Eyenga 2022 Cells]]
:::: '''p''' Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. '''Cells''' 11:1598. - [[Eyenga 2022 Cells |»Bioblast link«]]
<br>
 
:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::: '''q''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
<br>
 
:::::: [[File:Granger 2015 Redox Biol CORRECTION.png|400px|link=Granger 2015 Redox Biol]]
:::: '''r''' Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. '''Redox Biol''' 6:524-551. - [[Granger 2015 Redox Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::: '''s''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Hanna 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Hanna 2023 Antioxid Redox Signal]]
:::: '''t''' Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. '''Antioxid Redox Signal''' 38:57-67. - [[Hanna 2023 Antioxid Redox Signal |»Bioblast link«]]
<br>
 
:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|700px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::: '''u''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. '''Front Biosci (Landmark Ed)''' 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |»Bioblast link«]]
<br>
 
:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::: '''v''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
<br>
 
:::::: [[File:Kim 2010 Korean Diabetes J CORRECTION.png|400px|link=Kim 2010 Korean Diabetes J]]
:::: '''w''' Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. '''Korean Diabetes J''' 34:146-53. - [[Kim 2010 Korean Diabetes J |»Bioblast link«]]
<br>
 
:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::: '''x''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
<br>
 
:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::: '''y''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
<br>
 
:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::: '''z''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
<br>
 
:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::: '''α''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
<br>
 
:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::: '''β''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
<br>
 
:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::: '''γ''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
<br>
 
:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::: '''δ''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|400px|link=Nussbaum 2005 J Clin Invest]]
:::: '''ε''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. '''J Clin Invest''' 115:2689-91. - [[Nussbaum 2005 J Clin Invest |»Bioblast link«]]
<br>
 
:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::: '''ζ''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. '''Springer''', Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |»Bioblast link«]]
<br>
 
:::::: [[File:Radogna 2021 Methods Mol Biol CORRECTION.png|400px|link=Radogna 2021 Methods Mol Biol]]
:::: '''η''' Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. '''Methods Mol Biol''' 2276:129-141. - [[Radogna 2021 Methods Mol Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::: '''θ''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. '''Br J Cancer''' 122:168-81. - [[Raimondi 2020 Br J Cancer |»Bioblast link«]]
<br>
 
:::::: [[File:Read 2021 Redox Biol CORRECTION.png|400px|link=Read 2021 Redox Biol]]
:::: '''ι''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. '''Redox Biol''' 47:102164. - [[Read 2021 Redox Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::: '''κ''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
<br>
 
:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::: '''λ''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
<br>
 
:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::: '''μ''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |»Bioblast link«]]
<br>
 
:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|400px|link=Sarmah 2019 Transl Stroke Res]]
:::: '''ν''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. '''Transl Stroke Res''' doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |»Bioblast link«]]
 
:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::: '''ξ''' Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
<br>
 
:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::: '''ο''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
<br>
 
:::::: [[File:Szabo 2020 Int J Mol Sci CORRECTION.png|400px|link=Szabo 2020 Int J Mol Sci]]
:::: '''π''' Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. '''Int J Mol Sci''' 21:6344. - [[Szabo 2020 Int J Mol Sci |»Bioblast link«]]
<br>
 
:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|400px|link=Turton 2022 Int J Mol Sci]]
:::: '''σ''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. '''Int J Mol Sci''' 23:7487. - [[Turton 2022 Int J Mol Sci |»Bioblast link«]]
<br>
 
:::::: [[File:Vekshin 2020 Springer Cham CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::: '''τ''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
<br>
 
:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::: '''υ''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
<br>
 
:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|400px|link=Yepez 2018 PLOS One]]
:::: '''φ''' Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. '''PLOS ONE''' 13:e0199938. - [[Yepez 2018 PLOS One |»Bioblast link«]]
<br>
 
:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::: '''χ''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |»Bioblast link«]]
<br>
 
:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::: '''ψ''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. '''Mil Med Res''' 5:41. - [[Zhang 2018 Mil Med Res |»Bioblast link«]]
<br>
 
 
== Supplement 4. FADH<sub>2</sub> as substrate of CII and FAD + 2H<sup>+</sup> as products ==
 
:::: '''Figure S4'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FAD + 2H<sup>+</sup> as products. Alphabetical sequence of publications from 2001 to 2023.
 
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::: '''a''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
<br>
 
:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::: '''b''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
<br>
 
:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::: '''c''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
<br>
 
:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::: '''d''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
<br>
 
:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::: '''e''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
<br>
 
:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::: '''f''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
 
:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::: '''g''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
<br>
 
:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::: '''h''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
<br>
 
:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::: '''i''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |»Bioblast link«]]
 
 
== Supplement 5. FADH<sub>2</sub> as substrate of CII and FAD<sup>+</sup> as product ==
 
:::: '''Figure S5'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FAD<sup>+</sup> as product. Alphabetical sequence of publications from 2001 to 2023.
 
:::::: [[File:Area-Gomez 2019 J Clin Invest CORRECTED.png|400px|link=Area-Gomez 2019 J Clin Invest]]
:::: '''a''' Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. '''J Clin Invest''' 129:34-45. - [[Area-Gomez 2019 J Clin Invest |»Bioblast link«]]
<br>
 
:::::: [[File:Carriere 2019 Academic Press CORRECTION.png|400px|link=Carriere 2019 Academic Press]]
:::: '''b''' Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Carriere 2019 Academic Press |»Bioblast link«]]
<br>
 
:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|700px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::: '''c, d''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. '''Trends Endocrinol Metab''' 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |»Bioblast link«]]
<br>
 
:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::: '''e''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
<br>
 
:::::: [[File:Onukwufor 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Onukwufor 2022 Antioxidants (Basel)]]
:::: '''f''' Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. '''Antioxidants (Basel)''' 11:692. - [[Onukwufor 2022 Antioxidants (Basel) |»Bioblast link«]]
<br>
 
:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::: '''g''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
 
:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::: '''h''' Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
<br>
 
:::::: [[File:Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png|400px|link=Valle-Mendiola 2020 Cancers (Basel)]]
:::: '''i''' Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. '''Cancers (Basel)''' 12:124. - [[Valle-Mendiola 2020 Cancers (Basel) |»Bioblast link«]]
<br>
 
== Supplement 6. FADH<sub>2</sub> or FADH as substrate of CII and FADH, FADH<sup>+</sup>, or FAD<sup>+</sup> as product ==
 
:::: '''Figure S6'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FADH or FADH<sup>+</sup> as product. Sequence of publications from 2001 to 2023 according to (''4'') to (''9'').
 
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''a''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
<br>
 
:::::: [[File:Kezic 2016 Oxid Med Cell Longev CORRECTION.png|400px|link=Kezic 2016 Oxid Med Cell Longev]]
:::: '''b''' Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. '''Oxid Med Cell Longev''' 2016:2950503. - [[Kezic 2016 Oxid Med Cell Longev |»Bioblast link«]]
<br>
 
:::::: [[File:Li 2013 J Hematol Oncol CORRECTION.png|400px|link=Li 2013 J Hematol Oncol]]
:::: '''c''' Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. '''J Hematol Oncol''' 6:19. - [[Li 2013 J Hematol Oncol |»Bioblast link«]]
<br>
 
:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::: '''ρ''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. - [[Tabassum 2020 J Biomed Res Environ Sci |»Bioblast link«]]
<br>
 
:::::: [[File:Yang 2020 Transl Neurodegener CORRECTION.png|400px|link=Yang 2020 Transl Neurodegener]]
:::: '''d''' Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. '''Transl Neurodegener''' 9:19. - [[Yang 2020 Transl Neurodegener |»Bioblast link«]]
<br>
 
:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2018 Cell Metab]]
:::: '''e''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2018 Cell Metab |»Bioblast link«]]
<br>
 
:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::: '''f''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
<br>
 
 
:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|400px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::: '''g''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
<br>
 
:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::: '''h''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
<br>
 
:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::: '''i''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
<br>
 
 
== Supplement 7. FADH<sub>2</sub> or FADH as substrate of CII in websites ==
 
:::: '''Figure S7'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H ('''g'''), FADH<sub>2</sub> → FAD+2H<sup>+</sup> ('''a’''', '''c''', '''h-n'''), and FADH<sub>2</sub> → FAD ('''a''', '''b''', '''d-f''', '''o-θ''') should be corrected to FADH<sub>2</sub> → FAD (Eq. 3b). NADH → NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH → NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH → NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> → NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH → NAD ('''ι''') should be corrected to NADH+H<sup>+</sup> → NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).


:::::: [[File:OpenStax Biology.png|400px]]
:::::: [[File:OpenStax Biology.png|400px]]
Line 957: Line 292:
:::: '''Website 48''' ('''ι'''): [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3
:::: '''Website 48''' ('''ι'''): [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3


:::::: [[File:Stillway LW CORRECTION.png|300px]]
:::: '''xx''' Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: [https://doctorlib.info/medical/biochemistry/11.html Medical Biochemistry]
<br>


== Supplement 8. Weblinks on FAO and CII ==
 
<big>'''from FAO and CII ambiguitiy to CII as a H<sup>+</sup> in websites'''</big>
 
:::::: [[File:CHM333 LECTURES CORRECTION.png|250px]]
:::: '''xx''' [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna]
<br>


  (retrieved 2023-03-21 to 2023-05-02)
  (retrieved 2023-03-21 to 2023-05-02)
Line 967: Line 310:
:::: '''Website 51''': [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna]: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.
:::: '''Website 51''': [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna]: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


== Supplement 9. CII as a proton pump ==
:::: '''Figure S9'''. Complex II as a proton pump
:::::: [[File:Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png|400px|link=Cronshaw 2019 Photobiomodul Photomed Laser Surg]]
:::: '''a''' Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. '''Photobiomodul Photomed Laser Surg''' 37:517-26. - [[Cronshaw 2019 Photobiomodul Photomed Laser Surg |»Bioblast link«]]
<br>
:::::: [[File:Jian 2020 Cell Metab CORRECTION.png|400px|link=Jian 2020 Cell Metab]]
:::: '''b''' Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. '''Cell Metab''' 31:892-908. - [[Jian 2020 Cell Metab |»Bioblast link«]] 
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::: '''c''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>


:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::: '''d''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii - Image source: By Gabi Slizewska]: ‘FADH<sub>2</sub> from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H<sup>+</sup> ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).
:::: '''xx''': [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii - Image source: By Gabi Slizewska]: ‘FADH<sub>2</sub> from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H<sup>+</sup> ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).


:::::: [[File:BioNinja 1 CORRECTION.png|400px]]
:::::: [[File:BioNinja 1 CORRECTION.png|400px]]
:::::: [[File:BioNinja 2 CORRECTION.png|400px]]
:::::: [[File:BioNinja 2 CORRECTION.png|400px]]
:::: '''e''','''f''': [https://ib.bioninja.com.au/higher-level/topic-8-metabolism-cell/untitled/electron-transport-chain.html BioNinja] (retrieved 2023-05-04).
:::: '''xx''': [https://ib.bioninja.com.au/higher-level/topic-8-metabolism-cell/untitled/electron-transport-chain.html BioNinja] (retrieved 2023-05-04).
 


{{Template:Keywords: Substrates and cofactors}}
{{Template:Keywords: Substrates and cofactors}}
== Cited by ==
{{Template:Cited by Gnaiger 2024 MitoFit}}
[[Category:Ambiguity crisis - CII and FADH2]]
{{Labeling
{{Labeling
|area=Patients, mt-Awareness
|enzymes=Complex II;succinate dehydrogenase
|enzymes=Complex II;succinate dehydrogenase
|additional=Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN
|additional=Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN
}}
}}

Latest revision as of 08:48, 1 May 2024

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6 - Published 2023-11-22 J Biol Chem (2024)

» MitoFit Preprints 2023.3.v6.

MitoFit pdf

Complex II ambiguities ― FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Gnaiger E (2024) Complex II ambiguities ― FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470
Version 6 (v6) 2023-06-21
Version 5 (v5) 2023-05-31, (v4) 2023-05-12, (v3) 2023-05-04, (v2) 2023-04-04, (v1) 2023-03-24 - »Link to all versions«

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Keywords: coenzyme; cofactor; prosthetic group; coenzyme Q junction, Q-junction; Complex II, CII; H+-linked electron transfer; electron transfer system, ETS; matrix-ETS; membrane-ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH2; nicotinamide adenine dinucleotide, NAD+/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA; substrate; Gibbs force

O2k-Network Lab: AT Innsbruck Oroboros

» Links: Ambiguity crisis, Complex II ambiguities, Complex I and hydrogen ion ambiguities in the electron transfer system
Acknowledgements: I thank Luiza H.D. Cardoso, Sabine Schmitt, and Chris Donnelly for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Additions to 312 references on CII-ambiguities after publication of JBC 2024

Last update 2023-12-19
Bektas 2019 Aging (Albany NY) CORRECTION.png
#1 Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L (2019) Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY) 11:9234-63. - »Bioblast link«


Ben-Shachar 2009 J Neural Transm (Vienna) CORRECTION.png
#2 Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm (Vienna) 116:1383-96. - »Bioblast link«


Bon 2022 J Clin Case Rep Stud CORRECTION.png
#3 Bon E, Maksimovich NY, Dremza IK (2022) Alendronate-induced nephropathy. J Clin Case Rep Stud 3. - »Bioblast link«


Elsaeed 2021 Medicine Updates CORRECTION.png
#4 Elsaeed EM, Hamad A, Erfan OS, Elshahat M, Ebrahim F (2021) Role played by hippocampal apoptosis, autophagy and necroptosis in pathogenesis of diabetic cognitive dysfunction: a review of literature. Medicine Updates 6:41-63. - »Bioblast link«


Facucho-Oliveira 2009 Stem Cell Rev Rep CORRECTION.png
#5 Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140-58. - »Bioblast link«


Iqbal 2014 Springer, New York CORRECTION.png
#6 Iqbal T, Welsby PJ, Howarth FC, Bidasee K, Adeghate E, Singh J (2014) Effects of diabetes-induced hyperglycemia in the heart: biochemical and structural slterations. In: Turan B, Dhalla N (eds) Diabetic cardiomyopathy. Advances in biochemistry in health and disease 9. Springer, New York. - »Bioblast link«


Keogh 2015 Biochim Biophys Acta CORRECTION.png
#7 Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 1847:1401-11. - »Bioblast link«


Kunst 2023 Biomedicines CORRECTION.png
#8 Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K (2023) The influence of gut microbiota on oxidative stress and the immune system. Biomedicines 11:1388. - »Bioblast link«


Lal 2018 Springer CORRECTION.png
#9 Lal MA (2018) Respiration. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. Springer, Singapore:253-314. - »Bioblast link«


Lane 2000 Pediatr Res CORRECTION.png
#10 Lane RH, Tsirka AE, Gruetzmacher EM (2000) Uteroplacental insufficiency alters cerebral mitochondrial gene expression and DNA in fetal and juvenile rats. Pediatr Res 47:792-7. - »Bioblast link«


Palma 2023 Oncogene CORRECTION.png
#11 Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG (2023) ROS production by mitochondria: function or dysfunction? Oncogene. - »Bioblast link«


Quintard 2018 Springer, Cham CORRECTION.png
#12 Quintard H, Fontaine E, Ichai C (2018) Energy metabolism: from the organ to the cell. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. - »Bioblast link«


Reiss 2022 Exp Gerontol CORRECTION.png
#13 Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J (2022) The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 164:111828. - »Bioblast link«


Saghiv 2020 Springer, Cham CORRECTION.png
#14 Saghiv MS, Sagiv MS (2020) Metabolism. In: Basic Exercise Physiology. Springer, Cham. - »Bioblast link«


SiouNing 2023 Molecules CORRECTION.png
#15 SiouNing AS, Seong TS, Kondo H, Bhassu S (2023) MicroRNA regulation in infectious diseases and its potential as a biosensor in future aquaculture industry: a review. Molecules 28:4357. - »Bioblast link«


St John 2012 Cell Tissue Res CORRECTION.png
#16 St John JC (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res 349:795-808. - »Bioblast link«


Su 2020 Mol Biol Rep CORRECTION.png
#17 Su J, Ye D, Gao C, Huang Q, Gui D (2020) Mechanism of progression of diabetic kidney disease mediated by podocyte mitochondrial injury. Mol Biol Rep 47:8023-35. - »Bioblast link«


Thorgersen 2022 Front Microbiol CORRECTION.png
#18 Thorgersen MP, Schut GJ, Poole FL 2nd, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW (2022) Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. Front Microbiol 13:965625. - »Bioblast link«


Venkatachalam 2022 Cells CORRECTION.png
#19 Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11:1180. - »Bioblast link«


Wall 2006 Am J Physiol Heart Circ Physiol CORRECTION.png
#20 Wall JA, Wei J, Ly M, Belmont P, Martindale JJ, Tran D, Sun J, Chen WJ, Yu W, Oeller P, Briggs S, Gustafsson AB, Sayen MR, Gottlieb RA, Glembotski CC (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. Am J Physiol Heart Circ Physiol 291:H2462-72. - »Bioblast link«


Wang 2017 Am J Reprod Immunol CORRECTION.png
#21 Wang T, Zhang M, Jiang Z, Seli E (2017) Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol 77. - »Bioblast link«


Wider 2023 Crit Care CORRECTION.png
#22 Wider JM, Gruley E, Morse PT, Wan J, Lee I, Anzell AR, Fogo GM, Mathieu J, Hish G, O’Neil B, Neumar RW, Przyklenk K, Hüttemann M, Sanderson TH (2023) Modulation of mitochondrial function with near-infrared light reduces brain injury in a translational model of cardiac arrest. Crit Care 27:491. - »Bioblast link«


Wu 2022 Front Chem CORRECTION.png
#23 Wu Y, Liu X, Wang Q, Han D, Lin S (2022) Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow. Front Chem 10:948453. - »Bioblast link«


Zapico 2013 Aging Dis CORRECTION.png
#24 Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. Aging Dis 4:364-80. - »Bioblast link«


Supplement: FADH2 or FADH as substrate of CII in websites

Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H (g), FADH2 → FAD+2H+ (a’, c, h-n), and FADH2 → FAD (a, b, d-f, o-θ) should be corrected to FADH2 → FAD (Eq. 3b). NADH → NAD+ is frequently written in graphs without showing the H+ on the left side of the arrow, except for (p-r). NADH → NAD++H+ (a-g, m), NADH → NAD++2H+ (h-l), NADH+H+ → NAD++2H+ (j, k), and NADH → NAD (ι) should be corrected to NADH+H+ → NAD+ (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
OpenStax Biology.png
(a)
Website 1 (a,b): OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.11
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 1
Website 7 (a): LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 8 (a): - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
(a’)
Website 9 (a’,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 10 (a’,b,v): Saylor Academy
Expii OpenStax CORRECTION.png
(b)
Website 1 (a,b): OpenStax Biology - Fig. 7.12
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.13
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 3
Website 9 (a’,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 10 (a’,b,v): Saylor Academy
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Biologydictionary.net CORRECTION.png
(c)
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 13 (c): wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 14 (c): biologydictionary.net 2018-08-21
Website 15 (c): Quora
Website 16 (c): TeachMePhysiology - Fig. 1. 2023-03-13
Website 17 (c): toppr
Labxchange CORRECTION.png
(d)
Website 18 (d): Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Jack Westin CORRECTION.png
(e)
Website 19 (e): Jack Westin MCAT Courses
Videodelivery CORRECTION.png
(f)
Website 20 (f): videodelivery
SparkNotes CORRECTION.png
(g)
Website 21 (g): - SparkNotes
Researchtweet CORRECTION.png
(h)
Website 22 (h,t): researchtweet
Website 23 (h): Microbe Notes
FlexBooks 2 0 CORRECTION.png
(i)
Website 24 (i): FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Labster Theory CORRECTION.png
(j)
Website 25 (j): Labster Theory
Nau.edu CORRECTION.png
(k)
Website 26 (k): nau.edu
ScienceFacts CORRECTION.png
(l)
Website 27 (l): ScienceFacts
Ck12 CORRECTION.png
(m)
Website 28 (m): cK-12
Wikimedia ETC CORRECTION.png
(n)
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Website 29 (n): Wikimedia
Creative-biolabs CORRECTION.png
(o)
Website 30 (o): creative-biolabs
Vector Mine CORRECTION.png
(p)
Website 31 (p): dreamstime
Website 32 (p): VectorMine
YouTube Dirty Medicine Biochemistry CORRECTION.png
(q)
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
DBriers CORRECTION.png
(r)
Website 34 (r): DBriers
SNC1D CORRECTION.png
(s)
Website 35 (s): SNC1D - BIOLOGY LESSON PLAN BLOG
ThoughtCo-Getty Images CORRECTION.png
(t)
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 22 (h,t): researchtweet
Website 36 (t): dreamstime
Hyperphysics CORRECTION.png
(u)
Website 37 (u): hyperphysics
Khan Academy CORRECTION.png
(v)
Website 9 (a’,b,v): Khan Academy
Website 10 (a’,b,v): Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
(w)
Website 11 (b,c,n,w,β): expii - Whitney, Rolfes 2002
UrbanPro CORRECTION.png
(x)
Website 38 (x): UrbanPro
Quizlet CORRECTION.png
(y)
Website 39 (y): Quizlet
Unm.edu CORRECTION.png
(z)
Website 40 (z): unm.edu
YouTube sciencemusicvideos CORRECTION.png
(α)
Website 41 (α): YouTube sciencemusicvideos - Uploaded 2014-08-19
Expii-Gabi Slizewska CORRECTION.png
(β)
Website 11 (b,c,n,w,β): expii expii - Image source: By Gabi Slizewska
BiochemDen CORRECTION.png
(γ)
Website 42 (γ): BiochemDen.com
Hopes CORRECTION.png
(δ)
Website 43 (δ): hopes, Huntington’s outreach project for education, at Stanford
Studocu CORRECTION.png
(ε)
Website 44 (ε): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
ScienceDirect CORRECTION.png
(ζ)
Website 45 (ζ): ScienceDirect
BBC BITESIZE CORRECTION.png
(η)
Website 46 (η): BBC BITESIZE cK-12
Freepik CORRECTION.png
(θ)
Website 47 (θ): freepik
LibreTexts Chemistry CORRECTION.png
(ι)
Website 48 (ι): - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3
Stillway LW CORRECTION.png
xx Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: Medical Biochemistry



from FAO and CII ambiguitiy to CII as a H+ in websites

CHM333 LECTURES CORRECTION.png
xx CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna


(retrieved 2023-03-21 to 2023-05-02)
Website 49: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Website 50: The Medical Biochemistry Page: ‘In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttle’ (Figure 8d).
Website 51: CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


Expii-Gabi Slizewska CORRECTION.png
xx: expii expii - Image source: By Gabi Slizewska: ‘FADH2 from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H+ ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).
BioNinja 1 CORRECTION.png
BioNinja 2 CORRECTION.png
xx: BioNinja (retrieved 2023-05-04).


Questions.jpg


Click to expand or collaps
Bioblast links: Substrates and cofactors - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Substrate
» Substrate
» Product
» Substrates as electron donors
» Cellular substrates
» MitoPedia: Substrates and metabolites
» Substrate-uncoupler-inhibitor titration
Cofactor
» Cofactor
» Coenzyme, cosubstrate
» Nicotinamide adenine dinucleotide
» Coenzyme Q2
» Prosthetic group
» Flavin adenine dinucleotide
Referennces
» Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6


Cited by

Gnaiger 2024 Ambiguity crisis.jpg
Gnaiger E (2024) Addressing the ambiguity crisis in bioenergetics and thermodynamics. MitoFit Preprints 2024.3. https://doi.org/10.26124/mitofit:2024-0003


Labels: MiParea: Patients, mt-Awareness 



Enzyme: Complex II;succinate dehydrogenase 



Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.