Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "'''O2k-Workshop on high-resolution respirometry.''' Innsbruck, Tyrol, Au". Since there have been only a few results, also nearby values are displayed.

Showing below up to 50 results starting with #1.

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)


    

List of results

  • MiPNet08.18 LactateDehydrogenase  + ('''Kuznetsov AV, Gnaiger E. Laboratory pro'''Kuznetsov AV, Gnaiger E. Laboratory protocol: Lactate dehydrogenase. Cytosolic marker enzyme. Mitochondr Physiol Network 08.18.''' </br></br>Lactate dehydrogenase (EC 1.1.1.27) is an enzyme, which catalyzes the last step in glycolysis. LDH is a soluble enzyme and localized in the cytosol (cytoplasm). LDH, therefore, is used as a quantitative marker enzyme for the intact cell, its activity providing information on cellular glycolytic capacity (Renner et al, 2003). Measurement of LDH release (leakage) is an important and frequently applied test for cellular membrane permeabilization (rupture) and severe irreversible cell damage. LDH leakage normally correlates well with CK release and the trypan blue viability test.</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue]][[Oroboros O2k-Catalogue]])
  • MiPNet08.13 mt-Isolation-RLM  + ('''Lassnig B, Gnaiger E. Laboratory protoc'''Lassnig B, Gnaiger E. Laboratory protocol: Isolation of rat liver mitochondria. Mitochondr Physiol Network 08.13.''' </br><br/></br></br><div style="padding:0px;border: 1px solid #aaaaaa;margin-bottom:0px;margin-right:10px"></br><div style="font-size:100%;font-weight:bold;padding:0.2em;padding-right: 0.4em;padding-left: 0.4em;background-color:#eeeeee;border-bottom:1px solid #aaaaaa;text-align:left;"></br>[[Image:O2k-support system.jpg|right|150px|link=http://wiki.oroboros.at/index.php/O2k-technical_support_and_open_innovation|O2k-technical support and open innovation]]</br>: <big>Open the '''pdf document''' above.</big></br></div></br><div style="background-color:#ffffff;padding-top:0.2em;padding-right: 0.4em;padding-bottom: 0.2em;padding-left: 0.4em;"></br>::::» Current O2k-series: '''[https://www.oroboros.at/index.php/product-category/products/o2k-packages/ NextGen-O2k Series XB and O2k Series J]'''</br>::::» Current software versions DatLab 8.0: [[MitoPedia: DatLab]]</br>::::* ''Further details:'' '''» [[MitoPedia: O2k-Open Support]]'''</br></div></br></div></br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue]]roboros O2k-Catalogue]])
  • IOC10  + ('''Lectures on High-Resolution Respirometr'''Lectures on High-Resolution Respirometry and Oroboros O2k Demonstration at BTK 1994.''' Innsbruck, Tyrol, Austria; 1994 September.</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • Long Night of Research 2016 Innsbruck AT  + ('''Long Night of Research 2016: MitoFit – Training for the powerhouses of your blood- and muscle cells. Innsbruck, AT.''')
  • Long Night of Research 2018 Innsbruck AT  + ('''Long Night of Research 2018: The diagnostic bioenergetic report – a milestone on the way to mitochondrial fitness and physical well-being. Innsbruck, AT.''')
  • Long Night of Research 2020 Virtual Event  + ('''Long Night of Research 2020: The diagnostic bioenergetic report – a milestone on the way to mitochondrial fitness and physical well-being. Virtual Event.''')
  • ESCI 2016 Paris FR  + ('''Meeting of the European Society for Clinical Investigation, Paris, FR''')
  • IOC05  + ('''Metabolic Energetics in Ecological, Cellular and Biomedical Research.''' Aberystwyth Wales United Kingdom; 1993 March 01-03. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiP2023 Obergurgl AT  + ('''MiP2023, Obergurgl, Austria, 2023.''')
  • MiPschool Obergurgl 2023  + ('''MiPschool, Obergurgl, Austria, 2023: Mitochondrial structure and function, respiratory supercomplexes, and respiratory control''')
  • Jezek 2011 AbstractMitoComLectures  + ('''MitoCom Lecture''' '''2011-Nov-10, 8:1'''MitoCom Lecture'''</br></br>'''2011-Nov-10, 8:15 - 09:45'''. Medical University Innsbruck, Anichstr. 25, Chirurgie (8-U1-517) Seminarraum 2</br></br>Speaker: '''[[Jezek P|Prof. Dr. Petr Jezek, Prague]]'''</br></br>Host: [[Gnaiger E|Erich Gnaiger, DSL, MitoCom Tyrol]]</br></br></br>'''Abstract''': Three-dimensional (3D) super-resolution microscopy, using a biplane detection scheme, termed biplane photo-activated localization microscopy (Biplane FPALM), enables imaging of volumes as thick as whole cells and reveals otherwise unaccessible details of cellular organization [1]. Hence, we attempted to visualize mitochondrial reticulum via the matrix space loaded with mitochondria-addressed Eos, while transfecting cells by lentiviral expression. Our 3D images of single Eos molecules in the matrix space have proven the continuous character of mitochondrial reticulum tubules, i.e., an existence of a highly interconnected major mitochondrial reticulum in insulinoma Ins1E and oxidative-phosphorylation-dependent glutaminolytic hepatoma HepG2 cells [2] (Figure).</br></br>Also, using Eos-conjugate of mitochondrial transcription factor-A (TFAM), we have imaged nucleoids of mitochondrial DNA (mtDNA) in which TFAM represents a major assessor protein. Using PA-CFP2-TFAM and mitochondria-addressed Eos, the first 3D two color super-resolution images were obtained for mitochondrial reticulum together with the distribution of mt nucleoids in it. In intact cells we have found mt nucleoids of a narrow size distribution. The Biplane FPALM technique has proven to be robust and reliable for imaging of mitochondrion and related substructures.</br></br>Supported by grants P302/10/0346 (GACR); ME09029 (Czech Ministry of Education); IAA500110701, and M200110902 (Academy of Sciences).) and 1R01GM091791-02 (NIH). Disclosure statement: J.B. declares significant financial interest in Vutara, Inc.</br></br>[1] Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) 3D sub-100 nm resolution by biplane fluorescence photoactivation localization microscopy. Nat. Methods 5: 527-529.</br></br>[2] Mlodzianoski MJ, Schreiner JM, Callahan SP, Smolková K, Dlasková A, Šantorová J, Ježek P, Bewersdorf J (2011) Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt. Express. 19: 15009-15019.microscopy. Opt. Express. 19: 15009-15019.)
  • MitoFit Open Seminar 2017-10-23  + ('''MitoFit Open Seminar on respiration, cryopreservation and viability test in human blood cells'''. Innsbruck, AT)
  • UMDF2016 Seattle WA US  + ('''Mitochondrial Medicine 2016, Seattle, W'''Mitochondrial Medicine 2016, Seattle, WA, USA.''' </br></br>The [[United Mitochondrial Disease Foundation]] Symposium has been recognized by many researchers, scientists, and families as THE symposium for mitochondrial disease in the world. 10 years ago, the UMDF had only a handful of exhibitors and less than 200 scientific attendees. We now have more exhibitors than space at times and close to 600 attendees … representing almost every state in the United States and more than 15 different countries from around the world.different countries from around the world.)
  • UMDF2017 Washington DC US  + ('''Mitochondrial Medicine 2017, Washington DC, USA.''')
  • MiPNet14.09 MiP-Collection  + ('''Mitochondrial Physiology (MiP) ''contin'''Mitochondrial Physiology (MiP) ''continues a tradition of rigorous mitochondrial bioenergetics'' '''([http://www.mitophysiology.org quoting the International MiPsociety]). The company [[Oroboros Instruments]] Corp. values this tradition as a basis of our continuous instrumental development, which is part of our concept of Corporate Social Responsibility. In this spirit and with emphasis on our Educational Responsibility, we initiated and support the ''[[MiP-Collection]]''.[[MiP-Collection]]''.)
  • Gnaiger 2011 Abstract-MonteVerita  + ('''Mitochondrial capacity''': [[OXPHOS]]'''Mitochondrial capacity''': [[OXPHOS]] capacity is evaluated in isolated mitochondria (mt) and permeabilized cells with physiological substrate cocktails to reconstitute tricarboxylic acid cycle function. As a consequence, convergent electron flow from Complexes CI+II of the electron transfer-pathway ([[ET-pathway]]) to the [[Q-junction]] exerts an additive effect on flux [1].</br></br>'''Oxygen kinetics of mt-respiration''': The apparent ''K''<sub>m,O2</sub> or ''c''<sub>50</sub> [µM] (''p''<sub>50</sub> [kPa]) of mt-respiration increases linearly with respiratory capacity controlled by metabolic state, from 0.2 to 1.6 µM determined by [[high-resolution respirometry]]. O<sub>2</sub> gradients are significant only in large cells including cardiomyocytes. The apparent ''p''<sub>50</sub> increases 100-fold in permeabilized muscle fibers due to diffusion gradients [2].</br></br>'''mt-function at ''V''<sub>O2max</sub>''': Aerobic capacity of the human leg muscle exceeds maximum O<sub>2</sub> uptake of isolated mitochondria [3] and v. lateralis during ''V''<sub>O2max</sub> [4]. Therefore, oxygen supply limits aerobic performance, proportional to the apparent mt-excess capacity [5]. mt-respiration is more sensitive to average ''p''<sub>O2</sub> in heterogenous tissues than under homogenous conditions in vitro. Tissue heterogeneity increases the kinetic dependence of flux on average intracellular ''p''<sub>O2</sub>. High mt-density reinforces the steepness of oxygen gradients and oxygen heterogeneity in the tissue, contributing to the O<sub>2</sub> limitation in athletic vs sedentary individuals at ''V''<sub>O2max</sub> [6]. This provides a functional rationale for the observation that hypoxia does not specifically trigger mt-biogenesis [7].</br></br>Contribution to K-Regio ''[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.</br></br>[1] [[Gnaiger 2009 Int J Biochem Cell Biol|Gnaiger 2009]]; [[Lemieux_2011_Int J Biochem Cell Biol|Lemieux et al 2011 Int J Biochem Cell Biol]] </br></br>[2] [[Gnaiger_2003_Adv Exp Med Biol|Gnaiger 2003]]; [[Scandurra_2010_Adv Exp Med Biol|Scandurra, Gnaiger 2010 Adv Exp Med Biol]]. </br></br>[3] Rasmussen et al 2001 AJP.</br></br>[4] [[Boushel_2011_Mitochondrion|Boushel et al 2011 Mitochondrion]].</br></br>[5] [[Gnaiger_1998_J_Exp_Biol|Gnaiger et al 1998 JEB]].</br></br>[6] Richardson et al; Haseler et al JAP.</br></br>[7] [[Pesta_2011_AJP|Pesta et al 2011 AJP]]; [[Jacobs_2011_J_Appl_Physiol|Jacobs et al 2011 JAP]].Jacobs_2011_J_Appl_Physiol|Jacobs et al 2011 JAP]].)
  • MitoEAGLE preprint 2017-09-21  + ('''Note''': Subscript ‘§’ indicates throug'''Note''': Subscript ‘§’ indicates throughout the text those parts, where ''potential differences'' provide a mathematically correct but physicochemically incomplete description and should be replaced by ''stoichiometric potential differences'' ([[Gnaiger 1993 Pure Appl Chem |Gnaiger 1993b]]). A unified concept on vectorial motive transformations and scalar chemical reactions will be derived elsewhere (Gnaiger, in prep.). Appreciation of the fundamental distinction between ''differences of potential'' versus ''differences of stoichiometric potential'' may be considered a key to critically evaluate the arguments presented in Section 3 on the protonmotive force. Since this discussion appears to be presently beyond the scope of a MitoEAGLE position statement, Section 3 is removed from the next version and [[Gnaiger 2019 MitoFit Preprint Arch |'''final manuscript''']]. This section should become a topic of discussion within [[WG1 MitoEAGLE protocols, terminology, documentation |Working Group 1]] of the MitoEAGLE consortium, following a primary peer-reviewed publication of the concept of stoichiometric potential differences.t of stoichiometric potential differences.)
  • IOC42  + ('''O2k-International course on high-resolution respirometry.''' 2007 August 24, 9:00 a.m. to 3:00 p.m. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet14.03 IOC50  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg, Austria;2009 April 18 to 22. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet12.24 IOC44  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg, Austria; 2007 December 12-16. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet11.06 IOC36  + ('''O2k-International course on high-resolution respirometry and MiPNet workshop.''' Schroecken, Voralberg, Austria; 2006 December 13 to 17. :>> O2k-Workshop: [[Oroboros Events]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet09.11 IOC29  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg, Austria; 2004 December 9-13. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet11.03 IOC35 Schroecken  + ('''O2k-International course on high-resolution respirometry: O2k, TIP-2k and DatLab 4.''' Schroecken, Voralberg, Austria; 2006 August 18-22.)
  • MiPNet09.05 IOC28  + ('''O2k-International course on high-resolu'''O2k-International course on high-resolution respirometry and MiPNet meeting.''' Schroecken, Voralberg, Austria; 2004 September 15-21.</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet13.04 IOC47  + ('''O2k-International course on high-resolution respirometry.''' Schroecken,Voralberg, Austria; 2008 July 12-16. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • IOC43 Montevideo UY 2007  + ('''O2k-International course on high-resolution respirometry.''' 2007 September 1 and 6. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet11.02 IOC32  + ('''O2k-International course on high-resolu'''O2k-International course on high-resolution respirometry: Oroboros O2k, TIP-2k and DatLab 4.''' Schroecken, Voralberg, Austria; 2006 April 21-25.</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet10.08 IOC31  + ('''O2k-International course on high-resolution respirometry and ROS/NO detection.''' Schroecken, Voralberg, Austria; 2005 September 13-16.)
  • MiPNet13.02 IOC46  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg, Austria; 2008 April 04-08. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet14.15 IOC54  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg, Austria; 2009 December 11 to 16. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet14.11 IOC53  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg,Austria; 2009 July 30 to August 04. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet14.02 IOC49  + ('''O2k-International course on high-resolution respirometry.''' Gainsville, USA; 2009 February 23-25. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet10.02 IOC30  + ('''O2k-International course on high-resolution respirometry: Oxygraph-2k, TIP-2k and DatLab 4.''' Schroecken, Voralberg, Austria; 2005 April 08-10.)
  • MiPNet12.14 IOC39  + ('''O2k-International course on high-resolution respirometry.''' Schroecken, Voralberg, Austria; 2007 April 13 to 17. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet12.19 IOC41  + ('''O2k-International course on high-resolution respirometry.''' 2007 July 18-22. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet15.02 IOC56  + ('''O2k-MultiSensor Workshop.''' Schroecken, Voralberg, Austria;2010 April 12 to 16. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet10.05 O2-Concentration-Flux  + ('''O2k-Protocol for Oxygen flux''' In a '''O2k-Protocol for Oxygen flux''' </br></br>In a closed oxygraph chamber, the oxygen concentration declines over time as a result of respiratory processes. The time derivative, therefore, is a negative number. Why is then the ‘rate of oxygen consumption’ not expressed as a negative value? Why is the term ‘oxygen flux’ used in this context of chemical reactions? The rationale is based on fundamental concepts of physical chemistry and non-equilibrium thermodynamics.</br>[[Image:O2k-Protocols.jpg|right|150px|link=http://www.oroboros.at/?o2k-protocols|O2k-Protocols contents]]</br>[[Image:MiPNet10.05.jpg|centre|500px|thumb]]</br></br>Respiratory oxygen flux: On-line display of oxygen concentration (blue) and oxygen flux (respiration, red). Endogenous respiration of endothelial cells leads to oxygen depletion, followed by reoxygenations (dotted arrows). Cell membrane permeabilization by digitonin causes a decline of respiration to the resting level (without adenylates in the medium, -ANP). ADP titration activates respiration about 2-fold above the endogenous level of oxygen consumption.</br></br>Eye-fitted slopes of oxygen chart recorder traces belong to the past. With [[DatLab|DatLab]], trends are resolved. Accuracy is improved by standard numerical corrections. Graphs and protocols are stored and printed ready for publication.</br></br></br>'''Reference'''</br></br>[[Gnaiger_1993_Pure_Appl_Chem| Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65: 1983-2002.]]</br></br></br></br>:>> O2k-Protocols:[[O2k-Protocols| Overall contents]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]]os O2k-Catalogue | O2k-Catalogue]])
  • MiPNet08.17 IOC26  + ('''O2k-Training course on high-resolution respirometry.''' Innsbruck, Tyrol, Austria; 2003 December 11-13. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet08.11 IOC24  + ('''O2k-Workshop and training course on high-resolution respirometry.''' Schroecken, Vorarlberg, Austria; 2003 September 09-12. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet17.10 IOC70  + ('''O2k-Workshop on High-Resolution Respirometry.''' Barcelona, Catalonia, Spain; 2012 May 29 to 30 :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet16.01 IOC61  + ('''O2k-Workshop on High-Resolution Respiro'''O2k-Workshop on High-Resolution Respirometry - O2k-Basic and TPP-Basic.''' Schröcken, Vorarlberg, Austria; 2011 April 26 to May 1.[[File:O2k-TIP2k.jpg|right|200px|caption]]</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet17.14 IOC72 Schroecken AT  + ('''O2k-Workshop on High-Resolution Respirometry: O2k-Basic.''' Schroecken, Vorarlberg, Austria 2012 December 05 to 10 :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet16.03 IOC65  + ('''O2k-Workshop on High-Resolution Respiro'''O2k-Workshop on High-Resolution Respirometry: O2k-Basic and TPP-Basic.''' Schröcken, Vorarlberg, Austria; 2011 10 - 15 December </br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet15.10 IOC60  + ('''O2k-Workshop on High-Resolution Respiro'''O2k-Workshop on High-Resolution Respirometry - Introductory and Advanced.'''Schroecken, Voralberg, Austria; 2010 December 11 to 16.</br></br>The past O2k-Workshop on HRR ('''IOC60''') was a success based on long-term experience combined with continuous improvements and innovations. With introductory and advanced groups working in parallel, the needs of the participants could be met more specifically compared to introductory and advanced workshops organized separately. The next O2k-Workshop, therefore, will again offer parallel introductory and advanced workpackages.</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet15.01 IOC55  + ('''O2k-Workshop on high-resolution respirometry.''' Voralberg, Austria;2010 April 07 to 12.)
  • MiPNet07.05 IOC21  + ('''O2k-Workshop on high-resolution respirometry.''' Innsbruck, Tyrol, Austria; 2002 June 12-15. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet12.03 IOC37  + ('''O2k-Workshop on high-resolution respiro'''O2k-Workshop on high-resolution respirometry and mitochondrial physiology.''' Seoul, Korea; 2007 February 4. Satellite to [[ASMRM]] 2007.</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet06.09 IOC19  + ('''O2k-Workshop on high-resolution respirometry.''' Innsbruck, Tyrol, Austria; 2001 October 04-05. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet17.07 IOC67  + ('''O2k-Workshop on high-resolution respirometry.''' Sidney, Australia; 2012 April 02 to 04. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet17.08 IOC68 Schroecken AT  + ('''O2k-Workshop on high-resolution respirometry: O2k-Basic and TPP-Basic.''' Schroecken, Voralberg,Austria; 2012 April 11 to 16. :» O2k-Workshop: [[OROBOROS_Events|Current dates]] :» Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
 ('''O2k-Workshop on high-resolution respirometry.''' Innsbruck, Tyrol, Au)
  • MiPNet08.02 IOC23  + ('''O2k: Mitochondrial physiology (MiP) workshop on high-resolution respirometry.''' Schroecken AT, 27-31 March 2003. :>> O2k-Workshop: [[Oroboros Events| Current dates]] :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • Hassoun 2008 Crit Care Med  + ('''OBJECTIVE''': Growing evidence suggests'''OBJECTIVE''': Growing evidence suggests that mitochondria function is impaired in sepsis. Here, we tested the hypothesis that lipopolysaccharide would induce mitochondrial Ca<sup>2+</sup> overload and oxygen utilization abnormalities as consequences of sarcoplasmic reticulum Ca<sup>2+</sup> handling derangements that are typically observed in sepsis. As lipopolysaccharide-induced sarcoplasmic reticulum dysfunction was mainly characterized by reduced sarcoplasmic reticulum Ca<sup>2+</sup> uptake and Ca<sup>2+</sup> leak, we tested whether dantrolene, a sarco(endo)plasmic reticulum calcium ATPase leak inhibitor, would prevent mitochondrial and cardiac contractile dysfunction.</br></br>'''DESIGN''': Randomized controlled trial.</br></br>'''SETTING''': Experimental laboratory.</br></br>'''SUBJECTS''': Male Sprague Dawley rats.</br></br>'''INTERVENTIONS''': Sepsis was induced by injection of endotoxin lipopolysaccharide (10 mg/kg/intravenously). Assessment of contractile function and Ca<sup>2+</sup> handling was performed 4 hr after lipopolysaccharide. The relative contribution of the different Ca<sup>2+</sup> transporters to relaxation in intact cardiomyocytes was studied during successive electrically evoked twitches and caffeine stimulation. Sarcoplasmic reticulum vesicles and mitochondria from ventricles of rats treated or not with lipopolysaccharide were prepared to evaluate Ca<sup>2+</sup> uptake-release and oxygen fluxes, respectively. Effects of dantrolene (10 mg/kg) treatment in rats were evaluated in sarcoplasmic reticulum vesicles, mitochondria, and isolated hearts.</br></br>'''MEASUREMENTS AND MAIN RESULTS''': Lipopolysaccharide challenge elicited cardiac contractile dysfunction that was accompanied by severe derangements in sarcoplasmic reticulum function, i.e., reduced Ca<sup>2+</sup> uptake and increased sarcoplasmic reticulum Ca<sup>2+</sup> leak. Functional sarcoplasmic reticulum changes were associated with modification in the status of phospholamban phosphorylation whereas SERCA was unchanged. Rises in mitochondrial Ca<sup>2+</sup> content observed in lipopolysaccharide-treated rats coincided with derangements in mitochondrial oxygen efficacy, i.e., reduced respiratory control ratio. Administration of dantrolene in lipopolysaccharide-treated rats prevented mitochondrial Ca2+ overload and mitochondrial oxygen utilization abnormalities. Moreover, dantrolene treatment in lipopolysaccharide rats improved heart mitochondrial redox state and myocardial dysfunction.</br></br>'''CONCLUSION:''' These experiments suggest that sarcoplasmic reticulum Ca<sup>2+</sup> handling dysfunction is an early event during endotoxemia that could be responsible for, or contribute to, mitochondrial Ca<sup>2+</sup> overload, metabolic failure, and cardiac dysfunction.tion is an early event during endotoxemia that could be responsible for, or contribute to, mitochondrial Ca<sup>2+</sup> overload, metabolic failure, and cardiac dysfunction.)
  • Akude 2011 Diabetes  + ('''OBJECTIVE:''' Impairments in mitochondr'''OBJECTIVE:''' Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome.</br></br>'''RESEARCH DESIGN AND METHODS:''' Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS).</br></br>'''RESULTS:''' Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a Complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a Complex I protein) were reduced by 29 and 36% (''P'' < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control.</br></br>'''CONCLUSIONS:''' Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the [[respiratory chain]] was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.tic neurons under high glucose concentration.)
  • Japiassu 2011 Crit Care Med  + ('''OBJECTIVE:''' Increasing evidence point'''OBJECTIVE:''' Increasing evidence points to the role of mitochondrial dysfunction in the pathogenesis of sepsis. Previous data indicate that mitochondrial function is affected in monocytes from septic patients, but the underlying mechanisms and the impact of these changes on the patients' outcome are unknown. We aimed to determine the mechanisms involved in mitochondrial dysfunction in peripheral blood mononuclear cells from patients with septic shock.</br></br>'''DESIGN:''' A cohort of patients with septic shock to study peripheral blood mononuclear cell mitochondrial respiration by high-resolution respirometry analyses and to compare with cells from control subjects.</br></br>'''SETTING:''' Three intensive care units and an academic research laboratory.</br></br>'''SUBJECTS:''' Twenty patients with septic shock and a control group composed of 18 postoperative patients without sepsis or shock.</br></br>'''INTERVENTIONS:''' Ex vivo measurements of mitochondrial oxygen consumption were carried out in digitonin-permeabilized peripheral blood mononuclear cells from 20 patients with septic shock taken during the first 48 h after intensive care unit admission as well as in peripheral blood mononuclear cells from control subjects. Clinical parameters such as hospital outcome and sepsis severity were also analyzed and the relationship between these parameters and the oxygen consumption pattern was investigated.</br></br>'''MEASUREMENTS AND MAIN RESULTS:''' We observed a significant reduction in the respiration specifically associated with adenosine-5'-triphosphate synthesis ([[State 3]]) compared with the control group (5.60 vs. 9.89 nmol O2/min/10(7) cells, respectively, ''P'' < .01). Reduction of State 3 respiration in patients with septic shock was seen with increased prevalence of organ failure (''r'' = -0.46, ''P'' = .005). Nonsurviving patients with septic shock presented significantly lower adenosine diphosphate-stimulated respiration when compared with the control group (4.56 vs. 10.27 nmol O2/min/10(7) cells, respectively; ''P'' = .004). Finally, the presence of the functional F1Fo adenosine-5'-triphosphate synthase complex (0.51 vs. 1.00 ng oligo/mL/10(6) cells, ''P'' = .02), but not the adenine nucleotide translocator, was significantly lower in patients with septic shock compared with control cells.</br></br>'''CONCLUSION:''' Mitochondrial dysfunction is present in immune cells from patients with septic shock and is characterized as a reduced respiration associated to adenosine-5'-triphosphate synthesis. The molecular basis of this phenotype involve a reduction of F1Fo adenosine-5'-triphosphate synthase activity, which may contribute to the energetic failure found in sepsis.ute to the energetic failure found in sepsis.)
  • Rostambeigi 2011 Transplantation  + ('''OBJECTIVE:''' To determine biological m'''OBJECTIVE:''' To determine biological mechanisms involved in posttransplantation diabetes mellitus caused by the immunosuppressant tacrolimus (FK506).</br></br>'''METHODS:''' INS-1 cells and isolated rat islets were incubated with vehicle or FK506 and harvested at 24-hr intervals. Cells were assessed for viability, apoptosis, proliferation, cell insulin secretion, and content. Gene expression studies by microarray analysis, quantitative polymerase chain reaction, and motifADE analysis of the microarray data identified potential FK506-mediated pathways and regulatory motifs. Mitochondrial functions, including cell respiration, mitochondrial content, and bioenergetics were assessed.</br></br>'''RESULTS:''' Cell replication, viability, insulin secretion, oxygen consumption, and mitochondrial content were decreased (''P''<0.05) 1.2-, 1.27-, 1.77-, 1.32-, and 1.43-fold, respectively, after 48-hr FK506 treatment. Differences increased with time. FK506 (50 ng/mL) and cyclosporine A (800 ng/mL) had comparable effects. FK506 significantly decreased mitochondrial content and mitochondrial bioenergetics and showed a trend toward decreased oxygen consumption in isolated islets. Cell apoptosis and proliferation, mitochondrial DNA copy number, and ATP:ADP ratios were not significantly affected. Pathway analysis of microarray data showed FK506 modification of pathways involving ATP metabolism, membrane trafficking, and cytoskeleton remodeling. PGC1-α mRNA was down-regulated by FK506. MotifADE identified nuclear factor of activated T-cells, an important mediator of β-cell survival and function, as a potential factor mediating both up- and down-regulation of gene expression.</br></br>'''CONCLUSIONS:''' At pharmacologically relevant concentrations, FK506 decreases insulin secretion and reduces mitochondrial density and function without changing apoptosis rates, suggesting that posttransplantation diabetes induced by FK506 may be mediated by its effects on mitochondrial function.ted by its effects on mitochondrial function.)
  • Chowdhury 2010 Diabetes  + ('''Objective''': Impairments in mitochondr'''Objective''': Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function.</br></br>'''Research design and methods''': Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed.</br></br>'''Results''': Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31-44% and with Asc + TMPD by 29-39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins.</br></br>'''Conclusions''': Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS.hout a significant rise in perikaryal ROS.)
  • Haendeler 2009 Arterioscler Thromb Vasc Biol  + ('''Objective'''—The enzyme telomerase and '''Objective'''—The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function.</br></br>'''Methods and Results'''—Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide–induced damage. TERT increases overall respiratory chain activity, which is most pronounced at Complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H<sub>2</sub>O<sub>2</sub>-induced apoptosis. Lung fibroblasts from 6-month-old TERT<sup>-/-</sup> mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT ''in vivo''.</br></br>'''Conclusion'''—Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress–induced damage.iratory chain activity and protecting against oxidative stress–induced damage.)
  • Virtual OroDM02  + ('''Oroboros Distributor Meeting'''. Virtual.)
  • MiPNet26.07 Installation and startup support session  + ('''Oroboros Installation and startup support session'''.)
  • MiPNet15.07 IOC59  + ('''Oroboros O2k-Workshop on High-Resolution Respirometry. Obergurgl, Tyrol, Austria; 2010 October 01 to 06. Satellite to [[MiP2010]].''' :>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet28.11 IOC163 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria (2024 June 17-22).<br>)
  • MiPNet28.12 IOC167 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria (2024 Sep 30 - Oct 05).<br>)
  • MiPNet24.02 IOC141 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria; 2019 September.)
  • MiPNet28.02 IOC162 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria (2023 October 02-07).<br>)
  • MiPNet24.01 IOC139 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria; 2019.)
  • MiPNet28.01 IOC160 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria (2023 June 19-24).<br>)
  • MiPNet27.04 IOC155 Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolutio'''Oroboros O2k-Workshop on high-resolution respirometry'''. Schroecken, Austria (2022 October 03-08).<br></br>Following the [[MiPNet27.05_Schroecken_BEC_tutorial-Living_Communications_pmP|BEC tutorial on mitochondrial membrane potential and protonmotive pressure]] (2022 Sep 30 - Oct 03).[[MiPNet27.05_Schroecken_BEC_tutorial-Living_Communications_pmP|BEC tutorial on mitochondrial membrane potential and protonmotive pressure]] (2022 Sep 30 - Oct 03).)
  • MiPNet25.02 IOC Schroecken AT  + ('''Oroboros O2k-Workshop on high-resolution respirometry'''.)
  • MiPNet25.17 Virtual O2k-Workshop PhotoBiology  + ('''Oroboros Virtual O2k-Workshop on high-resolution respirometry and PhotoBiology'''.)
  • MiPNet26.02 Virtual O2k-Workshop:Q-Module  + ('''Oroboros Virtual O2k-Workshop on high-resolution respirometry and and measurement of the redox state of the Q-pool'''.)
  • MiPNet25.16 Virtual O2k-Workshop HRR  + ('''Oroboros Virtual O2k-Workshops on high-resolution respirometry''' were offered during the COVID-19 lockdown and are discontinued.)
  • MiPNet14.14 PermeabilizedFiberPreparation  + ('''Pesta D, Gnaiger E (2015) Preparation o'''Pesta D, Gnaiger E (2015) Preparation of permeabilized muscle fibers for diagnosis of mitochondrial respiratory function. Mitochondr Physiol Network 14.14(02):1-5.''' </br></br>Application of [[permeabilized muscle fibers]] and [[high-resolution respirometry]] offer a sensitive diagnostic test of mitochondrial dysfunction in small [[biopsy]] specimens of human muscle. By using these techniques in conjunction with multiple [[substrate-uncoupler-inhibitor titration]] (SUIT) protocols, respirometric studies of human and animal tissue biopsies improve our fundamental understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial myopathies.</br></br>[[Image:MiPNet14.14.jpg|right|200px|thumb]]</br>:>> Product: [[O2k-Catalogue: O2k-MultiSensor]], [[O2k-Core]], [[Oroboros O2k-Catalogue]][[Oroboros O2k-Catalogue]])
  • Pasdois 2015 Fatty Acid Oxidation O2k-Network Discussion Forum  + ('''Protocol''': Couple palmitoylcarnitine (10µM) + malate (1mM) on isolated mitochondria and permeabilized fibers. In such case the buffer is always supplemented with 2mg/ml of BSA.)
  • Ciapaite 2015 Fatty Acid Oxidation O2k-Network Discussion Forum  + ('''Protocol''': I use either palmitoyl-L-carnitine plus malate (25 µM + 2.5 mM) or palmitoyl-CoA + L-carnitine + malate (25 µM + 2 mM + 2.5 mM) as substrates. Respiratory control index is usually around 5-6 for healthy controls.)
  • Robidoux 2015 Fatty Acid Oxidation O2k-Network Discussion Forum  + ('''Protocol''': Palmitate, Stearate, Oleate and Linoleate in intact cells. We use various BSA-fatty acid combinations that result in free fatty acid levels that are in the 2 to 12 nM range.)
  • Chou 2015 Fatty Acid Oxidation O2k-Network Discussion Forum  + ('''Protocol''': final concentration of dig'''Protocol''': final concentration of digitonin in chamber is 10μg/ml</br>cell number in chamber is 2 millions cell/ml, cell type PBMC, Malate (2mM), Palmitoyl-DLcarnitine-HCl (20μM), ADP (2.5mM), pyruvate (5mM), glutamate (10mM), succinate (10mM), rotenone (0.1μM), malonic acid(5mM), myxothiazol (0.5μM), antimycin A (2.5μM), TMPD (0.5mM), azide (100mM)cin A (2.5μM), TMPD (0.5mM), azide (100mM))
  • Lanza 2010 Curr Opin Clin Nutr Metab Care  + ('''Purpose of review''': Mitochondrial con'''Purpose of review''': Mitochondrial content and function vary across species, tissue types, and lifespan. Alterations in skeletal muscle mitochondrial function have been reported to occur in in aging and in many other pathological conditions. This review focuses on the state of the art ''in vivo'' and ''in vitro'' methodologies for assessment of muscle mitochondrial function.</br></br>'''Recent findings''': Classic studies of isolated mitochondria have measured function from maximal respiratory capacity. These fundamental methods have recently been substantially improved and novel approaches to asses mitochondrial functions ''in vitro'' have been emerged. Noninvasive</br>methods based on magnetic resonance spectroscopy (MRS) and near-infrared</br>spectroscopy (NIRS) permit ''in vivo'' assessment of mitochondrial function and are rapidly becoming more accessible to many investigators. Moreover, it is now possible to gather information on regulation of mitochondrial content by measuring the ''in vivo'' synthesis rate of individual mitochondrial proteins.</br></br>'''Summary: High-resolution respirometry has emerged as a powerful tool for ''in vitro'' measurements of mitochondrial function in isolated mitochondria and permeabilized fibers.''' Direct measurements of ATP production are possible by bioluminescence. Mechanistic data provided by these methods is further complimented by ''in vivo'' assessment using MRS and NIRS and the translational rate of gene transcripts.he translational rate of gene transcripts.)
  • Votion 2010 Equine Vet J  + ('''REASONS FOR PERFORMING STUDY:''' Limite'''REASONS FOR PERFORMING STUDY:''' Limited information exists about the muscle mitochondrial respiratory function changes that occur in horses during an endurance season.</br></br>'''OBJECTIVES:''' To determine effects of training and racing on muscle oxidative phosphorylation (OXPHOS) and electron transport system (ET-pathway) capacities in horses with high resolution respirometry (HRR).</br></br>'''METHODS:''' Mitochondrial respiration was measured in microbiopsies taken from the triceps brachii (tb) and gluteus medius (gm) muscles in 8 endurance horses (7 purebred Arabians and 1 crossbred Arabian) before training (T0), after two 10 week training periods (T1, T2) and after 2 CEI** endurance races (R1, R2). Muscle OXPHOS capacity was determined using 2 titration protocols without (SUIT 1) or with pyruvate (SUIT 2) as substrate. Electrons enter at the level of Complex I, Complex II or both complexes simultaneously (Complexes I+II). Muscle ET capacity was obtained by uncoupling Complexes I+II sustained respiration.</br></br>'''RESULTS:''' T1 improved OXPHOS and ET capacities in the tb as demonstrated by the significant increase of oxygen fluxes vs. T0 (Complex I: +67%; ET-pathway: +37%). Training improved only OXPHOS in the gm (Complex I: +34%). Among horses that completed the race, a significant decrease in OXPHOS (Complex I: ∼ -35%) and ET-pathway (-22%) capacities was found in the tb with SUIT 2 indicating a reduced aerobic glycolysis. Significant correlations between CK activities and changes in OXPHOS were found suggesting a relationship between exercise-induced muscle damage and depression of mitochondrial respiration.</br></br>'''CONCLUSIONS:''' For the first time, OXPHOS and ET capacities in equine muscle at different steps of an endurance season have been determined by HRR. Significant alterations in mitochondrial respiratory function in response to endurance training and endurance racing have been observed although these changes appeared to be muscle group specific.nges appeared to be muscle group specific.)
  • MiPNet02.04 DatLab2 TimeConstant  + ('''Reck M, Wyss M, Lassnig B, Gnaiger E (1'''Reck M, Wyss M, Lassnig B, Gnaiger E (1997) DatLab 2. High time resolution. Mitochondr Physiol Network 02.04:1-11.''' »[http://www.bioblast.at/index.php/File:MiPNet02.04_DatLab2_TimeConstant.pdf Versions]</br></br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue ]][Oroboros O2k-Catalogue ]])
  • Research to Practice 2016 Melbourne AU  + ('''Research to Practice 2016, Melbourne, Victoria, AU; [http://researchtopractice2016.com.au Research to Practice 2016].''')
  • New Frontiers in Cardiovascular Research 2016 Singapore SG  + ('''Research to Practice 2016, Singapore, SG''')
  • SFRR Australasia 2016 Gold Coast AU  + ('''SFRR Australasia 2016, Gold Coast, AU; [http://www.sfrra2016.org/overview.php SFRR Australasia 2016].''')
  • SFRR-E 2016 Budapest HU  + ('''SFRR-E 2016, Budapest, HU; [http://sfrr-e-2016.hu/ SFRR-E 2016].''')
  • IOC166 Ljubljana SI  + ('''Satellite symposium and workshop "Skeletal Muscle Research – from Cell to Human"'''. Ljubljana, Slovenia (2024 Sep 26).<br>)
  • MiPNet06.01 O2k-Overview  + ('''Summary:''' The Oroboros O2k provides t'''Summary:''' The Oroboros O2k provides the instrumental basis for high-resolution respirometry. Compared to any of its competitors, the Oroboros O2k is a high-performance instrument, and high-resolution is distinguished from conventional approaches by a combination of unique features and specifications. These set a new standard in bioenergetics, mitochondrial physiology, clinical research and diagnosis of mitochondrial pathologies.nd diagnosis of mitochondrial pathologies.)
  • MiPNet10.09 MiP2005  + ('''Summary:''' Whereas isolated mitochondr'''Summary:''' Whereas isolated mitochondria remain one of the gold-standards in studies of bioenergetics and mitochondrial physiology, permeabilized tissues and cells have become an alternative with several advantages. But some disadvantages have to be considered, too, for optimum experimental design and critical evaluation of results.design and critical evaluation of results.)
  • CSH Asia 2017 Suzhou CN  + ('''The Cold Spring Harbor Asia conference on Mitochondria'''. Suzhou, China; 2017 October.)
  • MiPNet07.01 Advances  + ('''The [[Oroboros O2k]]'''The [[Oroboros O2k]] with [[DatLab]] software is the sole-source instrument for [[high-resolution respirometry]] (HRR), with the option of modular [[O2k-MultiSensor]] extension and electronically controlled [[Titration-Injection microPump]] (TIP2k), and accessories including the [[ISS-Integrated Suction System\230 V\EU]] (ISS) and titration syringes.'''[[ISS-Integrated Suction System\230 V\EU]] (ISS) and titration syringes.''')
  • Mickevicius 2016 Thesis  + ('''The aim of this research:''' To investi'''The aim of this research:''' To investigate an effect of short time ischemia/reperfusion ''in vivo'' on rat kidney mitochondria oxidative phosphorylation.</br></br>'''Objectives:''' To evaluate the effect of 20 min ischemia and 30 min reperfusion on mitochondria oxidative phosforilation system and investigate rat mitochondrial respiration chain complex I, II and II + III activity.</br></br>'''Object of this research:''' Wistar breed rats males were used to perform this research.</br></br>'''Methods:''' Warm ischemia (37 ° C) to rat kidneys was induced by clamping renal arteries using vascular clamps. Ischemia was induced for 20 min and after that reperfusion lasted for 30 min. Kidneys were removed and mitochondria were isolated by using differential centrifugation method. The amount of proteins was measured via Buret method. Mitochondrial respiration rates were measured by Oxygraph-2k system and using glutamate/malate and succinate as substrates. Mitochondrial respiration chain complexes activity was measured spectrophotometrically.</br></br>'''Results:''' This research results show that short time (20 min) ischemia and reperfusion (30 min) does not affect the respiration rates when mitochondrial respiration chain complex I substrate glutamate/malate is being oxidized. This research shows that oxidizing mitochondrial respiration chain complex II substrate succinate evaluates respiration rate in state two after short-time ischemia 1.47 times but didn’t affect state three. Oxidizing succinate respiration control index decreases by 22 % which show that even after short-time ischemia mitochondrial membrane is getting damaged. Complex I activity decreased by 67% after 20 min ischemia and 30 min reperfusion.</br></br>'''Conclusions:''' Research showed that even short time of ischemia damages mitochondrial oxidative phosphorylation system. Short-time ischemia decreases mitochondrial respiration chain complex I.mitochondrial respiration chain complex I.)
  • Tar 2014 J Biol Chem  + ('''This manuscript was withdrawn by the au'''This manuscript was withdrawn by the author!'''</br></br>The conserved Blm10/PA200 activators bind to the proteasome core particle gate and facilitate turnover of peptides and unfolded proteins ''in vitro''. We report here that Blm10 is required for the maintenance of functional mitochondria. BLM10 expression is induced 25-fold upon a switch from fermentation to oxidative metabolism. In the absence of BLM10 Saccharomyces cerevisiae cells exhibit a temperature-sensitive growth defect under oxidative growth conditions and produce colonies with dysfunctional mitochondria at high frequency. Loss of BLM10 leads to reduced respiratory capacity, increased mitochondrial oxidative damage and reduced viability in the presence of oxidative stress or death stimuli. In the absence of BLM10 increased fragmentation of the mitochondrial network under oxidative stress is observed indicative of elevated activity of the mitochondrial fission machinery. The degradation of Dnm1, the main factor mediating mitochondrial fission, is impaired in the absence of BLM10 ''in vitro'' and ''in vivo''. These data suggest that the mitochondrial functional and morphological changes observed are related to elevated Dnm1 levels. This hypothesis is supported by the finding that cells that constitutively overexpress DNM1, display the same mitochondrial defects as blm10Δ cells. The data are consistent with a model in which Blm10-proteasome mediated turnover of Dnm1 is required for the maintenance of mitochondrial function and provides cytoprotection under conditions that induce increased mitochondrial damage and programmed cell death.hondrial damage and programmed cell death.)
  • MiPNet14.10 O2k-Top 10  + ('''We summarize 10 compelling reasons for choosing the Oroboros O2k, for collaborating in the Oroboros Ecosystem, and for spreading our reproducibility committment. ‘Top 10’ reflects our corporate goals.''')
  • Schiemer 2018 Schriften  + ('''Wolfgang Wieser (1924–2017) – a central'''Wolfgang Wieser (1924–2017) – a central force in Austrian biology.'''</br></br>The most important stages in Wolfgang Wieser’s life and scientific career are illustrated in this paper. Wolfgang Wieser was a central personality in Austrian biology. His contributions to the development of an eco-physiological approach are outlined, including his books on evolutionary biology, especially in context of the cultural development of mankind.xt of the cultural development of mankind.)
  • IOC48  + ('''Workshop at the 5th Meeting of ASMRM Jo'''Workshop at the 5th Meeting of ASMRM Jointly with Chinese Mit'2008 Tianjin University of Sport.''' Tianjin , China; 2008 November 09.</br>:>> O2k-Workshop: [[Oroboros Events| Current dates]]</br>:>> Product: [[Oroboros O2k]], [[Oroboros O2k-Catalogue | O2k-Catalogue]][[Oroboros O2k-Catalogue | O2k-Catalogue]])
  • MiPNet19.16 IOC98  + ('''[[File:Sunpoint Hsu Gnaiger Tsai Lu.JPG|right|500px|thumb|[[Hsu A| Ari Hsu]]'''[[File:Sunpoint Hsu Gnaiger Tsai Lu.JPG|right|500px|thumb|[[Hsu A| Ari Hsu]], [[Gnaiger E| Erich Gnaiger]], [[Tsai S| Sunny Tsai]] and [[Lu A| Amelia Lu]] (left to right) in the Sunpoint Office at IOC98.'''</br>]]</br>[[Image:O2k-Workshops.png|left|130px|link=http://www.oroboros.at/?O2k-Workshops]]</br>'''98th OROBOROS O2k-Workshop on high-resolution respirometry and O2k-Fluorometry'''lution respirometry and O2k-Fluorometry''')
  • Gnaiger IOC62-Introduction  + ('''[[High-resolution respirometry]]''' (HRR) provides a quantitative approach to bioenergetics and mitochondrial physiology with the [[Oroboros O2k]] (Oroboros Instruments) offering several sole-source features.)
  • MitoFit Open Seminar 2017-07-14  + ('''[[Karabatsiakis 2017 MitoFit Open Seminar|MitoFit Open Seminar on immune cell bioenergetics]]'''. Innsbruck, AT)
  • Leuner 2012 Antioxid Redox Signal  + (''AIMS'' Intracellular amyloid beta (Aβ) o''AIMS'' Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function.</br></br>''RESULTS'' Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels ''in vivo''.</br></br>''INNOVATION'' We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production ''in vitro'' and ''in vivo''.</br></br>''CONCLUSION'' Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD.ibutes to the pathogenesis of sporadic AD.)
  • Stride 2013 Eur J Heart Fail  + (''AIMS'': Heart failure (HF) with left ven''AIMS'': Heart failure (HF) with left ventricular systolic dysfunction (LVSD) is associated with a shift in substrate utilization and a compromised energetic state. Whether these changes are connected with mitochondrial dysfunction is not known. We hypothesized that the cardiac phenotype in LVSD could be caused by reduced mitochondrial oxidative phosphorylation (OXPHOS) capacity and reduced mitochondrial creatine kinase (miCK) capacity. The study aim was to test mitochondrial OXPHOS capacity in LVSD myocardium compared with OXPHOS capacity in a comparable patient group without LVSD.</br></br>''METHODS AND RESULTS'': Myocardial biopsies were obtained from the left ventricle during cardiac valve or left ventricular assist device (LVAD) surgery. Patients were stratified according to left ventricular ejection fraction (LVEF) into LVSD (LVEF <45%, n = 14) or CONTROL (LVEF >45%, n = 15). Mitochondrial respiration was measured in muscle fibres with addition of non-fatty acid substrates or octanoyl-l-carnitine, a medium chain fatty acid (MCFA). The ''in situ'' enzyme capacity of miCK was determined from APD titrations in the presence or absence of creatine. Maximal OXPHOS capacity with non-fatty acid substrates was lower in the LVSD group compared with the CONTROL group (P ≤ 0.05). ADP sensitivity always increased significantly (P ≤ 0.05) with the addition of creatine, after which the sensitivity was highest (P ≤ 0.05) in LVSD compared with CONTROL. The stimulation of OXPHOS from octanoyl-l-carnitine titrations elicited ∼40% lower respiration in LVSD compared with CONTROL (P ≤ 0.05).</br></br>''CONCLUSION'': Human LVSD is associated with markedly diminished OXPHOS capacity, particularly in MCFA oxidation. This offers a candidate mechanism for a compromised energetic state and decreased reliance on fatty acid utilization in HF.reased reliance on fatty acid utilization in HF.)
  • Lou 2013 Cardiovasc Res  + (''AIMS'': Infarct-remodelled hearts are le''AIMS'': Infarct-remodelled hearts are less amenable to protection against ischaemia/reperfusion. Understanding preservation of energy metabolism in diseased vs. healthy hearts may help to develop anti-ischaemic strategies effective also in jeopardized myocardium.</br></br>''METHODS AND RESULTS'': Isolated infarct-remodelled/sham Sprague-Dawley rat hearts were perfused in the working mode and subjected to 15 min of ischaemia and 30 min of reperfusion. Protection of post-ischaemic ventricular work was achieved by pharmacological conditioning with sevoflurane. Oxidative metabolism was measured by substrate flux in fatty acid and glucose oxidation using [(3)H]palmitate and [(14)C]glucose. Mitochondrial oxygen consumption was measured in saponin-permeabilized left ventricular muscle fibres. Activity assays of citric acid synthase, hydroxyacyl-CoA dehydrogenase, and pyruvate dehydrogenase and mass spectrometry for acylcarnitine profiling were also performed. Six weeks after coronary artery ligation, the hearts exhibited macroscopic and molecular signs of hypertrophy consistent with remodelling and limited respiratory chain and citric acid cycle capacity. Unprotected remodelled hearts showed a marked decline in palmitate oxidation and acetyl-CoA energy production after ischaemia/reperfusion, which normalized in sevoflurane-protected remodelled hearts. Protected remodelled hearts also showed higher β-oxidation flux as determined by increased oxygen consumption with palmitoylcarnitine/malate in isolated fibres and a lower ratio of C16:1+C16OH/C14 carnitine species, indicative of a higher long-chain hydroxyacyl-CoA dehydrogenase activity. Remodelled hearts exhibited higher PPARα-PGC-1α but defective HIF-1α signalling, and conditioning enabled them to mobilize fatty acids from endogenous triglyceride stores, which closely correlated with improved recovery.</br></br>''CONCLUSIONS'': Protected infarct-remodelled hearts secure post-ischaemic energy production by activation of β-oxidation and mobilization of fatty acids from endogenous triglyceride stores.acids from endogenous triglyceride stores.)
  • Carvalho-Kelly 2020 J Bioenerg Biomembr  + (''Acanthamoeba castellanii'' is a free-liv''Acanthamoeba castellanii'' is a free-living amoeba and the etiological agent of granulomatous amoebic encephalitis and amoebic keratitis. ''A. castellanii'' can be present as trophozoites or cysts. The trophozoite is the vegetative form of the cell and has great infective capacity compared to the cysts, which are the dormant form that protect the cell from environmental changes. Phosphate transporters are a group of proteins that are able to internalize inorganic phosphate from the extracellular to intracellular medium. Plasma membrane phosphate transporters are responsible for maintaining phosphate homeostasis, and in some organisms, regulating cellular growth. The aim of this work was to biochemically characterize the plasma membrane phosphate transporter in ''A. castellanii'' and its role in cellular growth and metabolism. To measure inorganic phosphate (Pi) uptake, trophozoites were grown in liquid PYG medium at 28 °C for 2 days. The phosphate uptake was measured by the rapid filtration of intact cells incubated with 0.5 μCi of <sup>32</sup>Pi for 1 h. The Pi transport was linear as a function of time and exhibited Michaelis-Menten kinetics with a K<sub>m</sub> = 88.78 ± 6.86 μM Pi and V<sub>max</sub> = 547.5 ± 16.9 Pi × h<sup>-1</sup> × 10<sup>-6</sup> cells. ''A. castellanii'' presented linear phosphate uptake up to 1 h with a cell density ranging from 1 × 105 to 2 × 106 amoeba × ml<sup>-1</sup>. The Pi uptake was higher in the acidic pH range than in the alkaline range. The oxygen consumption of living trophozoites increased according to Pi addition to the extracellular medium. When the cells were treated with FCCP, no effect from Pi on the oxygen flow was observed. The addition of increasing Pi concentrations not only increased oxygen consumption but also increased the intracellular ATP pool. These phenomena were abolished when the cells were treated with FCCP or exposed to hypoxia. Together, these results reinforce the hypothesis that Pi is a key nutrient for ''Acanthamoeba castellanii'' metabolism.her, these results reinforce the hypothesis that Pi is a key nutrient for ''Acanthamoeba castellanii'' metabolism.)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.