Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Coupling-control ratio

From Bioblast
(Redirected from Coupling control ratio)


high-resolution terminology - matching measurements at high-resolution


Coupling-control ratio

Description

Coupling-control ratios CCR are flux control ratios FCR at a constant mitochondrial pathway-control state. In mitochondrial preparations, there are three well-defined coupling states of respiration: LEAK respiration, OXPHOS, and Electron-transfer-pathway state (ET state). In these states, the corresponding respirtory rates are symbolized as L, P, and E. In living cells, the OXPHOS state cannot be induced, but in the ROUTINE state the respiration rate is R. A reference rate Z is defined by taking Z as the maximum flux, i.e. flux E in the ET-state, such that the lower and upper limits of the CCR are defined as 0.0 and 1.0. Then there are two mitochondrial CCR, L/E and P/E, and two CCR for living cells, L/E and R/E.

Abbreviation: CCR

Reference: Flux control ratio, Gnaiger 2020 BEC MitoPathways

References

Bioblast linkReferenceYear
Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-00022020
Gnaiger E et al โ€• MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v12020

Keywords


Questions.jpg


Click to expand or collaps
Bioblast links: Coupling control - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>

1. Mitochondrial and cellular respiratory rates in coupling-control states

OXPHOS-coupled energy cycles. Source: The Blue Book
ยป Baseline state
Respiratory rate Defining relations Icon
OXPHOS capacity P = Pยด-Rox P.jpg mt-preparations
ROUTINE respiration R = Rยด-Rox R.jpg living cells
ET capacity E = Eยด-Rox E.jpg ยป Level flow
ยป Noncoupled respiration - Uncoupler
LEAK respiration L = Lยด-Rox L.jpg ยป Static head
ยป LEAK state with ATP
ยป LEAK state with oligomycin
ยป LEAK state without adenylates
Residual oxygen consumption Rox L = Lยด-Rox ROX.jpg
  • Chance and Williams nomenclature: respiratory states
ยป State 1 โ€”ยป State 2 โ€”ยป State 3 โ€”ยป State 4 โ€”ยป State 5

2. Flux control ratios related to coupling in mt-preparations and living cells

ยป Flux control ratio
ยป Coupling-control ratio
ยป Coupling-control protocol
FCR Definition Icon
L/P coupling-control ratio L/P L/P coupling-control ratio ยป Respiratory acceptor control ratio, RCR = P/L
L/R coupling-control ratio L/R L/R coupling-control ratio
L/E coupling-control ratio L/E L/E coupling-control ratio ยป Uncoupling-control ratio, UCR = E/L (ambiguous)
P/E control ratio P/E P/E control ratio
R/E control ratio R/E R/E control ratio ยป Uncoupling-control ratio, UCR = E/L
net P/E control ratio (P-L)/E net P/E control ratio
net R/E control ratio (R-L)/E net R/E control ratio

3. Net, excess, and reserve capacities of respiration

Respiratory net rate Definition Icon
P-L net OXPHOS capacity P-L P-L net OXPHOS capacity
R-L net ROUTINE capacity R-L R-L net ROUTINE capacity
E-L net ET capacity E-L E-L net ET capacity
E-P excess capacity E-P E-P excess capacity
E-R reserve capacity E-R E-R reserve capacity

4. Flux control efficiencies related to coupling-control ratios

ยป Flux control efficiency jZ-Y
ยป Background state
ยป Reference state
ยป Metabolic control variable
Coupling-control efficiency Definition Icon Canonical term
P-L control efficiency jP-L = (P-L)/P = 1-L/P P-L control efficiency P-L OXPHOS-flux control efficiency
R-L control efficiency jR-L = (R-L)/R = 1-L/R R-L control efficiency R-L ROUTINE-flux control efficiency
E-L coupling efficiency jE-L = (E-L)/E = 1-L/E E-L coupling efficiency E-L ET-coupling efficiency ยป Biochemical coupling efficiency
E-P control efficiency jE-P = (E-P)/E = 1-P/E E-P control efficiency E-P ET-excess flux control efficiency
E-R control efficiency jE-R = (E-R)/E = 1-R/E E-R control efficiency E-R ET-reserve flux control efficiency

5. General

ยป Basal respiration
ยป Cell ergometry
ยป Dyscoupled respiration
ยป Dyscoupling
ยป Electron leak
ยป Electron-transfer-pathway state
ยป Hyphenation
ยป Oxidative phosphorylation
ยป Oxygen flow
ยป Oxygen flux
ยป Permeabilized cells
ยป Phosphorylation system
ยป Proton leak
ยป Proton slip
ยป Respiratory state
ยป Uncoupling



Questions.jpg


Click to expand or collaps
Bioblast links: Normalization - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Rate
ยป Normalization of rate
ยป Flow
ยป Oxygen flow
ยป Flux
ยป Oxygen flux
ยป Flux control ratio
ยป Coupling-control ratio
ยป Pathway control ratio
ยป Flux control efficiency
Quantities for normalization
ยป Count in contrast to Number
ยป Mitochondrial marker
ยป O2k-Protocols: mitochondrial and marker-enzymes
ยป Citrate synthase activity
General
ยป Extensive quantity
ยป Specific quantity
ยป Advancement
ยป Motive unit
ยป Iconic symbols
Related keyword lists
ยป Keywords: Concentration and pressure



MitoPedia concepts: Respiratory control ratio 


MitoPedia methods: Respirometry