Description
Coupling-control states are defined in mitochondrial preparations (isolated mitochondria, permeabilized cells, permeabilized tissues, homogenates) as LEAK respiration, OXPHOS, and ET states, with corresponding respiration rates (L, P, E) in any electron-transfer-pathway state which is competent for electron transfer. These coupling states are induced by titration of ADP and uncouplers, and application of specific inhibitors of the phosphorylation pathway. In living cells, the coupling-control states are LEAK respiration, ROUTINE, and ET states of respiration with corresponding rates L, R, E, using membrane-permeable inhibitors of the phosphorylation system (e.g. oligomycin) and uncouplers (e.g. CCCP). Coupling-control protocols induce these coupling-control states sequentially at a constant electron-transfer-pathway state.
Abbreviation: CCS
Reference: BEC 2020.1, Gnaiger 2020 BEC MitoPathways, Gnaiger 2009 Int J Biochem Cell Biol
Communicated by Gnaiger E (2011-02-25) last update 2020-11-11.
SUITbrowser question: Coupling control
- Coupling-control protocols are SUIT protocols that allow to analyze coupling control in living cells or mitochondrial preparations.
- Use the SUITbrowser to find the best protocol to answer this and other research questions.
References
Keywords
4-compartmental OXPHOS model. (1) ET capacity E of the noncoupled electron transfer system ETS. OXPHOS capacity P is partitioned into (2) the dissipative LEAK component L, and (3) ADP-stimulated P-L net OXPHOS capacity. (4) If P-L is kinetically limited by a low capacity of the phosphorylation system to utilize the protonmotive force pmF, then the apparent E-P excess capacity is available to drive coupled processes other than phosphorylation P» (ADP to ATP) without competing with P».
- Bioblast links: Coupling control - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
1. Mitochondrial and cellular respiratory rates in coupling-control states
Respiratory rate | Defining relations | Icon | |
---|---|---|---|
OXPHOS capacity | P = P´-Rox | mt-preparations | |
ROUTINE respiration | R = R´-Rox | living cells | |
ET capacity | E = E´-Rox | » Level flow | |
» Noncoupled respiration - Uncoupler | |||
LEAK respiration | L = L´-Rox | » Static head | |
» LEAK state with ATP | |||
» LEAK state with oligomycin | |||
» LEAK state without adenylates | |||
Residual oxygen consumption Rox | L = L´-Rox |
2. Flux control ratios related to coupling in mt-preparations and living cells
FCR | Definition | Icon | |
---|---|---|---|
L/P coupling-control ratio | L/P | » Respiratory acceptor control ratio, RCR = P/L | |
L/R coupling-control ratio | L/R | ||
L/E coupling-control ratio | L/E | » Uncoupling-control ratio, UCR = E/L (ambiguous) | |
P/E control ratio | P/E | ||
R/E control ratio | R/E | » Uncoupling-control ratio, UCR = E/L | |
net P/E control ratio | (P-L)/E | ||
net R/E control ratio | (R-L)/E |
3. Net, excess, and reserve capacities of respiration
Respiratory net rate | Definition | Icon |
---|---|---|
P-L net OXPHOS capacity | P-L | |
R-L net ROUTINE capacity | R-L | |
E-L net ET capacity | E-L | |
E-P excess capacity | E-P | |
E-R reserve capacity | E-R |
4. Flux control efficiencies related to coupling-control ratios
Coupling-control efficiency | Definition | Icon | Canonical term | ||
---|---|---|---|---|---|
P-L control efficiency | jP-L | = (P-L)/P | = 1-L/P | P-L OXPHOS-flux control efficiency | |
R-L control efficiency | jR-L | = (R-L)/R | = 1-L/R | R-L ROUTINE-flux control efficiency | |
E-L coupling efficiency | jE-L | = (E-L)/E | = 1-L/E | E-L ET-coupling efficiency » Biochemical coupling efficiency | |
E-P control efficiency | jE-P | = (E-P)/E | = 1-P/E | E-P ET-excess flux control efficiency | |
E-R control efficiency | jE-R | = (E-R)/E | = 1-R/E | E-R ET-reserve flux control efficiency |
5. General
- » Basal respiration
- » Dyscoupled respiration
- » Dyscoupling
- » Electron leak
- » Electron-transfer-pathway state
- » Hyphenation
- » Oxidative phosphorylation
- » OXPHOS analysis
- » Oxygen flow
- » Oxygen flux
- » Permeabilized cells
- » Phosphorylation system
- » Proton leak
- » Proton slip
- » Respiratory state
- » Uncoupling
- Bioblast links: Uncoupling - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
- Specific
- » Artefacts by single dose uncoupling
- » ATP synthase
- » CCCP
- » Coupling-control protocol
- » DNP
- » Dyscoupled respiration
- » FCCP
- » Is respiration uncoupled - noncoupled - dyscoupled?
- » Noncoupled respiration: Discussion
- » Uncoupler
- » Uncoupled respiration - see » Noncoupled respiration
- » Uncoupling proteins
- » Uncoupling protein 1
- » Uncoupler titrations - Optimum uncoupler concentration
- Specific
- Respiratory states and control ratios
- » Biochemical coupling efficiency
- » Coupling-control state
- » Electron-transfer-pathway state
- » Electron-transfer pathway
- ET capacity
- » E-L coupling efficiency
- » Flux control efficiency
- » Flux control ratio
- » LEAK-control ratio
- » LEAK respiration
- » Noncoupled respiration
- » OXPHOS
- » OXPHOS capacity; » State 3
- » OXPHOS-control ratio, P/E ratio
- » Respiratory acceptor control ratio
- » ROUTINE-control ratio
- » ROUTINE respiration
- » ROUTINE state
- » State 3u
- » State 4
- » Uncoupling-control ratio UCR
- Respiratory states and control ratios
- Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v1
- Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-0002
- General (alphabetical order)
- Other keyword lists
MitoPedia concepts:
MiP concept,
Respiratory state,
SUIT concept,
SUIT state,
Recommended
MitoPedia methods:
Respirometry
MitoPedia topics:
EAGLE