Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
Line 22: Line 22:
[[File:N-S FADH2-FMNH2.png|right|500px]]
[[File:N-S FADH2-FMNH2.png|right|500px]]
'''Figure 1. Complex II (SDH) bridges H+-linked electron transfer from the TCA cycle (matrix-ETS) to the electron transfer system (membrane-ETS) of the mt-inner membrane (mtIM).''' '''(a)''' NADH+H<sup>+</sup> and '''(b)''' succinate are substrates of 2{H<sup>+</sup>+e<sup>-</sup>} transfer to CI and CII, respectively, with prosthetic groups FMN and FAD as the corresponding electron acceptors. '''(c)''' Symbolic representation of ETS pathway architecture. Electron flow converges at the N-junction (NAD<sup>+</sup> ā†’ NADH+H<sup>+</sup>). Electron flow from NADH and succinate S converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome ''c'' and in CIV to molecular O<sub>2</sub>, 2{H<sup>+</sup>+e<sup>-</sup>}+0.5 O<sub>2</sub> ā‡¢ H<sub>2</sub>O. '''(d)''' NADH+H<sup>+</sup> and NAD<sup>+</sup> cycle between matrix-dehydrogenases and CI, whereas FAD and FADH<sub>2</sub> cycle permanently bound within the same enzyme CII. Succinate and fumarate indicate the chemical entities irrespective of ionization, but charges are shown in NADH, NAD<sup>+</sup>, and H<sup>+</sup>. Joint pairs of half-circular arrows distinguish electron transfer 2{H<sup>+</sup>+eĀ­<sup>-</sup>} to CI and CII from vectorial H<sup>+</sup> translocation across the mtIM (H<sup>+</sup><sub>neg</sub> ā†’ H<sup>+</sup><sub>pos</sub>). CI and CIII pump hydrogen ions from the negatively (neg) to the positively charged compartment (pos). '''(e)''' Iconic representation of SDH subunits. SDHA catalyzes the oxidation succinate ā†’ fumarate + 2{H<sup>+</sup>+e<sup>-</sup>} and reduction FAD + 2{H<sup>+</sup>+e<sup>-</sup>} ā†’ FADH<sub>2</sub> in the soluble domain of CII. The ironā€“sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH<sub>2</sub> in SDHC and SDHD. Ā 
'''Figure 1. Complex II (SDH) bridges H+-linked electron transfer from the TCA cycle (matrix-ETS) to the electron transfer system (membrane-ETS) of the mt-inner membrane (mtIM).''' '''(a)''' NADH+H<sup>+</sup> and '''(b)''' succinate are substrates of 2{H<sup>+</sup>+e<sup>-</sup>} transfer to CI and CII, respectively, with prosthetic groups FMN and FAD as the corresponding electron acceptors. '''(c)''' Symbolic representation of ETS pathway architecture. Electron flow converges at the N-junction (NAD<sup>+</sup> ā†’ NADH+H<sup>+</sup>). Electron flow from NADH and succinate S converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome ''c'' and in CIV to molecular O<sub>2</sub>, 2{H<sup>+</sup>+e<sup>-</sup>}+0.5 O<sub>2</sub> ā‡¢ H<sub>2</sub>O. '''(d)''' NADH+H<sup>+</sup> and NAD<sup>+</sup> cycle between matrix-dehydrogenases and CI, whereas FAD and FADH<sub>2</sub> cycle permanently bound within the same enzyme CII. Succinate and fumarate indicate the chemical entities irrespective of ionization, but charges are shown in NADH, NAD<sup>+</sup>, and H<sup>+</sup>. Joint pairs of half-circular arrows distinguish electron transfer 2{H<sup>+</sup>+eĀ­<sup>-</sup>} to CI and CII from vectorial H<sup>+</sup> translocation across the mtIM (H<sup>+</sup><sub>neg</sub> ā†’ H<sup>+</sup><sub>pos</sub>). CI and CIII pump hydrogen ions from the negatively (neg) to the positively charged compartment (pos). '''(e)''' Iconic representation of SDH subunits. SDHA catalyzes the oxidation succinate ā†’ fumarate + 2{H<sup>+</sup>+e<sup>-</sup>} and reduction FAD + 2{H<sup>+</sup>+e<sup>-</sup>} ā†’ FADH<sub>2</sub> in the soluble domain of CII. The ironā€“sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH<sub>2</sub> in SDHC and SDHD. Ā 
[[File:FAO.png|right|600px]]
'''Figure 4. Fatty acid oxidation''' through the Ī²-oxidation cycle (Ī²-ox), the multi-enzyme electron transferring flavoprotein Complex (CETF, ETF:ETFDH; see text), and Complex I (CI) with convergent electron transfer into the Q-junction.


:::: '''Acknowledgements''': I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).
:::: '''Acknowledgements''': I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Revision as of 21:19, 25 September 2023

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6

Ā» MitoFit Preprints 2023.3.v6.

MitoFit pdf

Complex II ambiguities ā€• FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Version 6 (v6) 2023-06-21 10.26124/mitofit:2023-0003.v6
Version 5 (v5) 2023-05-31
Version 4 (v4) 2023-05-12
Version 3 (v3) 2023-05-04
Version 2 (v2) 2023-04-04
Version 1 (v1) 2023-03-24 - Ā»Link to all versionsĀ«

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the Ī²-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
ā€¢ Keywords: coenzyme Q junction, Q-junction; Complex II, CII; electron transfer system, ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH2; nicotinamide adenine dinucleotide, NAD+/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA

ā€¢ O2k-Network Lab: AT Innsbruck Oroboros

ORCID: ORCID.png Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria

N-S FADH2-FMNH2.png

Figure 1. Complex II (SDH) bridges H+-linked electron transfer from the TCA cycle (matrix-ETS) to the electron transfer system (membrane-ETS) of the mt-inner membrane (mtIM). (a) NADH+H+ and (b) succinate are substrates of 2{H++e-} transfer to CI and CII, respectively, with prosthetic groups FMN and FAD as the corresponding electron acceptors. (c) Symbolic representation of ETS pathway architecture. Electron flow converges at the N-junction (NAD+ ā†’ NADH+H+). Electron flow from NADH and succinate S converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome c and in CIV to molecular O2, 2{H++e-}+0.5 O2 ā‡¢ H2O. (d) NADH+H+ and NAD+ cycle between matrix-dehydrogenases and CI, whereas FAD and FADH2 cycle permanently bound within the same enzyme CII. Succinate and fumarate indicate the chemical entities irrespective of ionization, but charges are shown in NADH, NAD+, and H+. Joint pairs of half-circular arrows distinguish electron transfer 2{H++eĀ­-} to CI and CII from vectorial H+ translocation across the mtIM (H+neg ā†’ H+pos). CI and CIII pump hydrogen ions from the negatively (neg) to the positively charged compartment (pos). (e) Iconic representation of SDH subunits. SDHA catalyzes the oxidation succinate ā†’ fumarate + 2{H++e-} and reduction FAD + 2{H++e-} ā†’ FADH2 in the soluble domain of CII. The ironā€“sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH2 in SDHC and SDHD.

Acknowledgements: I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Unionā€™s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Supplement 1. Footnotes on terminology

ā€˜The dissociable, low-relative-molecular-mass active group of an enzyme which transfers chemical groups, hydrogen, or electrons. A coenzyme binds with its associated protein (apoenzyme) to form the active enzyme (holoenzyme) (Burtis, Geary 1994). ā€˜A low-molecular-weight, non-protein organic compound participating in enzymatic reactions as dissociable acceptor or donor of chemical groups or electronsā€™ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:23354 (CHEBI:23354, retrieved 2023-06-21). A coenzyme or cosubstrate is a cofactor that is attached loosely and transiently to an enzyme. NADH is listed as a coenzyme, which should be regarded as a substrate of pyridine-linked dehydrogenases (Lehninger 1975).
A cofactor is 'an organic molecule or ion (usually a metal ion) that is required by an enzyme for its activity. It may be attached either loosely (coenzyme) or tightly (prosthetic group)' - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=23357 (CHEBI:23357, retrieved 2023-06-21).
The convergent architecture of the electron transfer system is emphasized in contrast to linear electron transfer chains ETCs within segments of the ETS.
  • Electron transfer:
A distinction is necessary between electron transfer in redox reactions and electron transport (translocation) in the diffusion of charged ionic species within or between cellular compartments. The symbol 2{H++eāˆ’} is introduced to indicate H+-linked electron transfer of two hydrogen ions and two electrons in a redox reaction.
  • Gibbs force:
In contrast to the extensive quantity Gibbs energy [J], Gibbs force [JĀ·mol-1] is an intensive quantity expressed as the partial derivative of Gibbs energy [J] per advancement of a reaction [mol] (Gnaiger 1993; 2020).
  • H+-linked electron transfer:
The term H+-coupled electron transfer (Hsu et al 2022) is replaced by H+-linked electron transfer, to avoid confusion with coupled H+ translocation.
  • Matrix-ETS:
Electron transfer and corresponding OXPHOS capacities are classically studied in mitochondrial preparations as oxygen consumption supported by various fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; Gnaiger et al 2020).
  • Membrane-ETS:
Electron transfer is frequently considered as the segment of redox reactions linked to the mtIM. However, the membrane-ETS is only part of the total ETS, which includes the upstream matrix-ETS.
  • Misinformation:
Misinformation is the mistaken sharing of the same content (Wardle 2023).
A prosthetic group is a cofactor that is ā€˜a tightly bound, specific nonpolypeptide unit in a protein determining and involved in its biological activityā€™ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:26348 (CHEBI:26348, retrieved 2023-06-21). A prosthetic group is attached permanently and tightly or even covalently to an enzyme and that is regenerated in each enzymatic turnover. FAD is the prosthetic group of flavin-linked dehydrogenases, covalently bound to CII.
A substrate in a chemical reaction has a negative stoichiometric number since it is consumed, whereas a product has a positive stoichiometric number since it is produced. The general definition of a substrate in an enzyme-catalized reaction relies on the definition of the chemical reaction, without restriction to the nature of the substrate, i.e. independent of the substrate being a chemical entity in solution or a loosely bound cosubstrate (coenzyme) or even a tightly bound prosthetic group. The latter may be explicitly distinguished as a bound (internal) substrate from a free (external) substrate. Even different substrate pools may coexist (CoQ).
  • 2{H++e-}
In H+-linked two-electron transfer, 2H+ + 2e-, ā€˜the terms reducing equivalents or electron equivalents are used to refer to electrons and/or hydrogen atoms participating in oxidoreductionsā€™ (Lehninger 1975). The symbol 2[H] is frequently used to distinguish reducing equivalents in the transfer from hydrogen donors to hydrogen acceptors from aqueous H+. Acid-base reactions obtain equilibrium fast without catalyst, whereas the slow oxidation-reduction reactions require an enzyme to proceed. However, 2[H] does not explicitly express that it applies to both electron and hydrogen ion transfer. Brackets are avoided to exclude the confusion with amount-of-substance concentrations frequently indicated by brackets. H+-linked two-electron transfer 2{H++e-} is distinguished from single-electron transfer {H+}+{e-}.


Beyond version 6

Last update: 2023-09-16
From CGpDH to FADH2 to CII?

Blanco 2017 Academic Press CORRECTION.png /// Willson 2022 Blood CORRECTION.png /// Rai 2022 G3 (Bethesda) CORRECTION.png /// Koopman 2016 Nat Protoc CORRECTION.png

Comment (Cardoso Luiza, Gnaiger Erich, 2023-08-06):

Fig. 9.19 from Blanco, Blanco (2017), Fig. 1 from Willson et al (2022), and Fig. 1 from Rai et al (2022) show FADH2 (1) to be formed in the mitochondrial matrix from GPDH, GPD2, or GPO1 (all indicating CGpDH) and from the TCA cycle (Fig. 1 Rai et al (2022)), then (2) feeding electrons further 'To respiratory chain', the 'ETC', or 'Electron Transport Chain' (ETS). Combined with FADH2 shown (1) to be formed in the mt-matrix from the TCA cycle and (2) feeding into CII (Fig. 1 from Koopman et al (2016); among >120 examples discussed as CII-ambiguities), one may arrive at the erroneous conclusion on a direct role of CII in the oxidation of glycerophosphate, analogous to false representations of CII involved in fatty acid oxidation.

Addition to Figure 5: FAO and CII ambiguitiy

Frangos 2023 J Biol Chem CORRECTION.png
xx Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. J Biol Chem 299:105079. - Ā»Bioblast linkĀ«


Ma 2018 Cancer Lett CORRECTION.png
xx Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92-100. - Ā»Bioblast linkĀ«


Ma 2020 Sci Rep CORRECTION.png
xx Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 10:1450. - Ā»Bioblast linkĀ«


Picard 2012 Am J Respir Crit Care Med CORRECTION.png
xx Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140-9. - Ā»Bioblast linkĀ«


Picard 2018 Biol Psychiatry CORRECTION.png
xx Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. Psychosom Med 80:141-53. - Ā»Bioblast linkĀ«
xx Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES (2018) A mitochondrial health index sensitive to mood and caregiving stress. Biol Psychiatry 84:9-17. - Ā»Bioblast linkĀ«
xx Karan KR, Trumpff C, McGill MA, Thomas JE, Sturm G, Lauriola V, Sloan RP, Rohleder N, Kaufman BA, Marsland AL, Picard M (2020) Mitochondrial respiratory capacity modulates LPS-induced inflammatory signatures in human blood. Brain Behav Immun Health 5:100080. - Ā»Bioblast linkĀ«
xx Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M (2021) Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. Sci Rep 11:11595. - Ā»Bioblast linkĀ«
xx Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M (2021) Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. Elife 10:e70899. - Ā»Bioblast linkĀ«


Cortassa 2019 Front Physiol CORRECTION.png
xx Cortassa S, Aon MA, Sollott SJ (2019) Control and regulation of substrate selection in cytoplasmic and mitochondrial catabolic networks. A systems biology analysis. Front Physiol 10:201. - Ā»Bioblast linkĀ«


CHM333 LECTURES CORRECTION.png
xx CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna


Additions to Supplements

Achreja 2022 Nat Metab CORRECTION.png
xx Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat Metab 4:1119-37. - Ā»Bioblast linkĀ«


Alston 2017 J Pathol CORRECTION.png
xx Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236-50. - Ā»Bioblast linkĀ«


Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png
xx Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. J Transl Genet Genom 4:285-306. - Ā»Bioblast linkĀ«


Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png
xx Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci (Landmark Ed) 14:4015-34. - Ā»Bioblast linkĀ«


Bernardo 2013 Biol Chem CORRECTION.png
xx Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-Ī³ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. Biol Chem 394:1607-14. - Ā»Bioblast linkĀ«


Begriche 2011 J Hepatol CORRECTION.png
xx Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773-94. - Ā»Bioblast linkĀ«


Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png
xx Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. Biochim Biophys Acta Bioenerg 1862:148335. - Ā»Bioblast linkĀ«


Catania 2019 Orphanet J Rare Dis CORRECTION.png
xx Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, BĆ©nit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Orphanet J Rare Dis 14:236. - Ā»Bioblast linkĀ«


Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png
xx Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. Front Endocrinol (Lausanne) 14:1106544. - Ā»Bioblast linkĀ«


Che 2023 Plant Cell Environ CORRECTION.png
xx Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. Plant Cell Environ 46:2841-50. - Ā»Bioblast linkĀ«


Chinopoulos 2013 J Neurosci Res CORRECTION.png
xx Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of Ī±-ketoglutarate dehydrogenase complex. J Neurosci Res 91:1030-43. - Ā»Bioblast linkĀ«


Connolly 2018 Cell Death Differ CORRECTION.png
xx Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, BolaƱos JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, DĆ¼ssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, JordĆ”n J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, SatrĆŗstegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 25:542-72. - Ā»Bioblast linkĀ«


Diaz 2023 Front Mol Biosci CORRECTION.png
xx Diaz EC, Adams SH, Weber JL, Cotter M, BĆørsheim E (2023) Elevated LDL-C, high blood pressure, and low peak VĖ™O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 10:1136975. - Ā»Bioblast linkĀ«


Distelmaier 2009 Brain CORRECTION.png
xx Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833-42. - Ā»Bioblast linkĀ«


Duan 2019 Aging (Albany NY) CORRECTION.png
xx Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 11:7307-27. - Ā»Bioblast linkĀ«


Egan 2023 Physiol Rev CORRECTION.png
xx Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev 103:2057-2170. - Ā»Bioblast linkĀ«


Ekbal 2013 Chest CORRECTION.png
xx Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. Chest 143:1799-1808. - Ā»Bioblast linkĀ«


Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png
xx Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. Front Biosci (Schol Ed) 12:200-21. - Ā»Bioblast linkĀ«


Fahlbusch 2022 Int J Mol Sci CORRECTION.png
xx Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Kƶllmer C, Al-Hasani H, Lehr S, MĆ¼ller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. Int J Mol Sci 23:6873. - Ā»Bioblast linkĀ«


Fogg 2011 Chin J Cancer CORRECTION.png
xx Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526-39. - Ā»Bioblast linkĀ«


Forbes 2018 Nat Rev Nephrol CORRECTION.png
xx Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14:291-312. - Ā»Bioblast linkĀ«


Frangos 2023 J Biol Chem CORRECTION.png
xx Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. J Biol Chem 299:105079. - Ā»Bioblast linkĀ«


Fromenty 2023 J Hepatol CORRECTION.png
xx Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. J Hepatol 78:415-29. - Ā»Bioblast linkĀ«


Gao 2022 EBioMedicine CORRECTION.png
xx Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. EBioMedicine 83:104215. - Ā»Bioblast linkĀ«


Garcia-Neto 2017 PLOS ONE CORRECTION.png
xx Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto LuĆ©vano-MartĆ­nez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in Debaryomyces Hansenii. PLOS ONE 12:e0169621. - Ā»Bioblast linkĀ«


Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png
xx Giachin G, Jessop M, Bouverot R, Acajjaoui S, SaĆÆdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complexā€…I assembly complex suggests a regulatory role for deflavination. Angew Chem Int Ed Engl 60:4689-97. - Ā»Bioblast linkĀ«


Intlekofer 2019 Nat Metab CORRECTION.png
xx Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. Nat Metab 1:177-88. - Ā»Bioblast linkĀ«


Jezek 2023 Antioxid Redox Signal CORRECTION.png
xx Ježek P, JabÅÆrek M, HolendovĆ” B, EngstovĆ” H, DlaskovĆ” A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. Antioxid Redox Signal. https://doi.org/10.1089/ars.2022.0173 - Ā»Bioblast linkĀ«


Jia 2018 Cells CORRECTION.png
xx Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7:21. - Ā»Bioblast linkĀ«


Jochmanova 2016 Clin Cancer Res CORRECTION.png
xx Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. Clin Cancer Res 22:5001-11. - Ā»Bioblast linkĀ«


Joshi 2022 Biomolecules CORRECTION.png
xx Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. Biomolecules 12:880. - Ā»Bioblast linkĀ«


Keidar 2023 Front Physiol CORRECTION.png
xx Keidar N, Peretz NK, Yaniv Y (2023) Ca2+ pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. Front Physiol 14:1231259. - Ā»Bioblast linkĀ«


Klimova 2008 Cell Death Differ CORRECTION.png
xx Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. Cell Death Differ 15:660-6. - Ā»Bioblast linkĀ«


Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png
xx Knottnerus SJG, Bleeker JC, WĆ¼st RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 19:93-106. - Ā»Bioblast linkĀ«


Koopman 2016 Nat Protoc CORRECTION.png
xx Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11:1798-816. - Ā»Bioblast linkĀ«


Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png
xx Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105:7627-8. - Ā»Bioblast linkĀ«


Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png
xx Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. Antioxidants (Basel) 11:1995. - Ā»Bioblast linkĀ«


Lettieri-Barbato 2019 Mol Metab CORRECTION.png
xx Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. Mol Metab 25:11-9. - Ā»Bioblast linkĀ«


Lima 2021 Nat Metab CORRECTION.png
xx Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab 3:1091-108. - Ā»Bioblast linkĀ«


Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png
xx Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. Am J Physiol Heart Circ Physiol 319:H89-99. - Ā»Bioblast linkĀ«


Liu 2023 Int J Biol Sci CORRECTION.png
xx Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. Int J Biol Sci 19:897-915. - Ā»Bioblast linkĀ«


Loussouarn 2021 Front Immunol CORRECTION.png
xx Loussouarn C, Pers YM, Bony C, Jorgensen C, NoĆ«l D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. Front Immunol 12:623973. - Ā»Bioblast linkĀ«


Luo 2015 J Diabetes Res CORRECTION.png
xx Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in Ī² cell function and dysfunction. J Diabetes Res 2015:512618. - Ā»Bioblast linkĀ«


Ma 2018 Cancer Lett CORRECTION.png
xx Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92-100. - Ā»Bioblast linkĀ«


Ma 2020 Sci Rep CORRECTION.png
xx Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 10:1450. - Ā»Bioblast linkĀ«


Madamanchi 2007 Circ Res CORRECTION.png
xx Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460-73. - Ā»Bioblast linkĀ«


Martell 2023 Nat Commun CORRECTION.png
xx Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 14:2502. - Ā»Bioblast linkĀ«


Massart 2013 Curr Pathobiol Rep CORRECTION.png
xx Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep 1:147ā€“57. - Ā»Bioblast linkĀ«


Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png
xx Mathiyazakan V, Wong CF, Harikishore A, Pethe K, GrĆ¼ber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome bcc:aa3 supercomplex and a novel inhibitor targeting subunit cytochrome cI. Antimicrob Agents Chemother 67:e0153122. - Ā»Bioblast linkĀ«


Merlin 2021 Nat Metab CORRECTION.png
xx Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat Metab 3:1313-26. - Ā»Bioblast linkĀ«


Merritt 2020 Rev Endocr Metab Disord CORRECTION.png
xx Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord 21:479-93. - Ā»Bioblast linkĀ«


Mosegaard 2020 Int J Mol Sci CORRECTION.png
xx Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21:3847. - Ā»Bioblast linkĀ«


Mracek 2013 Biochim Biophys Acta CORRECTION.png
xx Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 1827:401-10. - Ā»Bioblast linkĀ«


Pharaoh 2023 Geroscience CORRECTION.png
xx Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, MartĆ­n-PĆ©rez M, Qian WJ, MacCoss MJ, VillĆ©n J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). Geroscience https://doi.org/10.1007/s11357-023-00861-y - Ā»Bioblast linkĀ«


Picard 2012 Am J Respir Crit Care Med CORRECTION.png
xx Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140-9. - Ā»Bioblast linkĀ«


Protti 2006 Crit Care CORRECTION.png
xx Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228. - Ā»Bioblast linkĀ«


Rai 2022 G3 (Bethesda) CORRECTION.png
xx Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 (Bethesda) 12:jkac115. - Ā»Bioblast linkĀ«


Rinaldo 2002 Annu Rev Physiol CORRECTION.png
xx Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477-502. - Ā»Bioblast linkĀ«
xx Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and Ī²-oxidation metabolites. Methods Cell Biol 155:83-120. - Ā»Bioblast linkĀ«


Sadri 2023 Function (Oxf) CORRECTION.png
xx Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. Function (Oxf) 4:zqad038. - Ā»Bioblast linkĀ«


Scandella 2023 Trends Endocrinol Metab CORRECTION.png
xx Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 34:446-61. - Ā»Bioblast linkĀ«


Shu 2023 Front Immunol CORRECTION.png
xx Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. Front Immunol 14:1199233. - Ā»Bioblast linkĀ«


Simon 2022 Function (Oxf) CORRECTION.png
xx Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. Function (Oxf) 3:zqac039. - Ā»Bioblast linkĀ«


Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png
xx Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 24:607-32. - Ā»Bioblast linkĀ«


Sommer 2020 Sci Adv CORRECTION.png
xx Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci Adv 6:eaba0694. - Ā»Bioblast linkĀ«


Spinelli 2018 Nat Cell Biol CORRECTION.png
xx Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745-54. - Ā»Bioblast linkĀ«


Steiner 2017 Int J Biochem Cell Biol CORRECTION.png
xx Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 89:125-35. - Ā»Bioblast linkĀ«


Tang 2014 Front Physiol CORRECTION.png
xx Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175. - Ā»Bioblast linkĀ«


Toleikis 2020 Cells CORRECTION.png
xx Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - Ā»Bioblast linkĀ«


Vayalil 2019 Oncol Lett CORRECTION.png
xx Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. Oncol Lett 18:4367-76. - Ā»Bioblast linkĀ«


Vockley 2021 Cambridge Univ Press CORRECTION.png
xx Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. Cambridge Univ Press:611-27. https://doi.org/10.1017/9781108918978.034 - Ā»Bioblast linkĀ«


Vorotnikov 2022 Biomedicines CORRECTION.png
xx Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? Biomedicines 10:3181. - Ā»Bioblast linkĀ«


Wang 2019 Trends Biochem Sci CORRECTION.png
xx Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. Trends Biochem Sci 44:401-14. - Ā»Bioblast linkĀ«


Xia 2022 Front Oncol CORRECTION.png
xx Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. Front Oncol 12:953668. - Ā»Bioblast linkĀ«


Yusoff 2015 InTech CORRECTION.png
xx Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. InTech: http://dx.doi.org/10.5772/58965 - Ā»Bioblast linkĀ«


Zhao 2021 Mol Biomed CORRECTION.png
xx Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. Mol Biomed 2:5. - Ā»Bioblast linkĀ«


Add to Supplement 7
Stillway LW CORRECTION.png
xx Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: Medical Biochemistry


Beyond preprint
Grandoch 2019 Nat Metab CORRECTION.png
1 Grandoch M, Flƶgel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, CastaƱeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sƶrgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 1:546-59. - Ā»Bioblast linkĀ«
NADH is shown as the product of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when FADH2 is shown as the substrate of CII.


Lancaster 2002 Biochim Biophys Acta.png Lancaster 2001 FEBS Lett CORRECTION.png
2 Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. Biochim Biophys Acta 1553:1-6. - Ā»Bioblast linkĀ«
fumarate + 2H+ shown besides NADH + H+ is ambiguous.
3 Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. FEBS Lett 504:133-41. - Ā»Bioblast linkĀ«


Supplement 2. FAD a substrate of SDH and FADH2 a substrate of CII

Figure S2. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. The TCA cycle reduces FAD to FADH2 - in several cases shown to be catalyzed by SDH. Then FADH2 is erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 2001 to 2023.


Arnold, Finley 2022 CORRECTION.png
a Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - Ā»Bioblast linkĀ«


Bansal 2019 Academic Press CORRECTED.png
b Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, PĆ©nicaud L, Rigoulet M (eds) Academic Press. - Ā»Bioblast linkĀ«


Beier 2015 FASEB J CORRECTION.png
c Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3āŗ T-regulatory cell function and allograft survival. FASEB J 29:2315-26. - Ā»Bioblast linkĀ«


Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png
g Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - Ā»Bioblast linkĀ«


Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png
d,e Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - Ā»Bioblast linkĀ«


Cortez-Pinto 2009 J Hepatol CORRECTION.png
h Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. J Hepatol 50:857-60. - Ā»Bioblast linkĀ«


De Beauchamp 2022 Leukemia CORRECTION.png
l de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 36:1-12. - Ā»Bioblast linkĀ«


DeBerardinis, Chandel 2016 CORRECTION.png
f DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - Ā»Bioblast linkĀ«


Fink 2018 J Biol Chem CORRECTION.png
i Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932-41. - Ā»Bioblast linkĀ«


Hamanaka 2013 Cell Logist CORRECTION.png
j Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cell Logist 3:e25456. - Ā»Bioblast linkĀ«


Han 2021 Am J Respir Cell Mol Biol CORRECTION.png
l Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol 65:134-45. - Ā»Bioblast linkĀ«


Himms-Hagen, Harper 2001 CORRECTION.png
k Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - Ā»Bioblast linkĀ«


Ishii 2012 Front Oncol CORRECTION.png
m Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front Oncol 2:137. - Ā»Bioblast linkĀ«


File:Jones, Bennett 2017 Chapter 4 CORRECTION.png
n Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid Ī²-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - Ā»Bioblast linkĀ«


Lewis 2019 CORRECTION.png
o Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - Ā»Bioblast linkĀ«


Martinez-Reyes 2020 Nature CORRECTION.png
p MartĆ­nez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585:288-92. - Ā»Bioblast linkĀ«


Martinez-Reyes, Chandel 2020 CORRECTION.png
q MartĆ­nez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - Ā»Bioblast linkĀ«


Missaglia 2021 CORRECTION.png
r Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - Ā»Bioblast linkĀ«


Nolfi-Donegan 2020 Redox Biol CORRECTION.png
s Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. - Ā»Bioblast linkĀ«


Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png
t Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid Ī²-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - Ā»Bioblast linkĀ«


Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png
u Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep 23:70. - Ā»Bioblast linkĀ«


Peng 2022 Front Oncol CORRECTION.png
w Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. Front Oncol 12:899502. - Ā»Bioblast linkĀ«


Polyzos 2017 Mech Ageing Dev CORRECTION.png
v Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - Ā»Bioblast linkĀ«


Shinmura 2013 Oxid Med Cell Longev CORRECTION.png
x Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxid Med Cell Longev 2013:528935. - Ā»Bioblast linkĀ«



Supplement 3. FADH2 a substrate of CII

Figure S3. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Alphabetical sequence of publications from 2001 to 2023.
Balaban 2005 Cell CORRECTION.png
a Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483-95. - Ā»Bioblast linkĀ«


Bao 2021 Cells CORRECTION.png
b Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 10:1715. - Ā»Bioblast linkĀ«


Benard 2011 Springer CORRECTION.png
c Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - Ā»Bioblast linkĀ«


Betiu 2022 Int J Mol Sci CORRECTION.png
d Bețiu AM, Noveanu L, HĆ¢ncu IM, Lascu A, Petrescu L, Maack C, ElmĆ©r E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. Int J Mol Sci 23:13653. - Ā»Bioblast linkĀ«


Beutner 2014 PLoS One CORRECTION.png
e Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One 9:e113330. - Ā»Bioblast linkĀ«


Billingham 2022 Nat Immunol CORRECTION.png
f Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23:692-704. - Ā»Bioblast linkĀ«


Brownlee 2001 Nature CORRECTION.png
g Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - Ā»Bioblast linkĀ«
Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - Ā»Bioblast linkĀ«


Brownlee 2003 J Clin Invest CORRECTION.png
h Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 112:1788-90. - Ā»Bioblast linkĀ«


Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png
i Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - Ā»Bioblast linkĀ«


Chen 2022 Am J Physiol Cell Physiol CORRECTION.png
j Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - Ā»Bioblast linkĀ«


Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png
k Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - Ā»Bioblast linkĀ«


De Villiers 2018 Adv Exp Med Biol CORRECTION.png
m de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - Ā»Bioblast linkĀ«


Delport 2017 Metab Brain Dis CORRECTION.png
n Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 32:1357-82. - Ā»Bioblast linkĀ«


Escoll 2019 Immunometabolism CORRECTION.png
o Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. Immunometabolism 1:e190011. - Ā»Bioblast linkĀ«


Eyenga 2022 Cells CORRECTION.png
p Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. Cells 11:1598. - Ā»Bioblast linkĀ«


Gasmi 2021 Arch Toxicol CORRECTION.png
q Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, BjĆørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - Ā»Bioblast linkĀ«


Granger 2015 Redox Biol CORRECTION.png
r Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 6:524-551. - Ā»Bioblast linkĀ«


Han 2019 Am J Respir Cell Mol Biol CORRECTION.png
s Han S, Chandel NS (2019) There is no smoke without mitochondria. Am J Respir Cell Mol Biol 60:489-91. - Ā»Bioblast linkĀ«


Hanna 2023 Antioxid Redox Signal CORRECTION.png
t Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. Antioxid Redox Signal 38:57-67. - Ā»Bioblast linkĀ«


Jarmuszkiewicz 2023 Front Biosci CORRECTION.png
u Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. Front Biosci (Landmark Ed) 28:61. - Ā»Bioblast linkĀ«


Keane 2011 Parkinsons Dis CORRECTION.png
v Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis 2011:716871. - Ā»Bioblast linkĀ«


Kim 2010 Korean Diabetes J CORRECTION.png
w Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. Korean Diabetes J 34:146-53. - Ā»Bioblast linkĀ«


Kumar 2021 J Biol Chem CORRECTION.png
x Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H2S oxidation. J Biol Chem 298:101435. - Ā»Bioblast linkĀ«


Liu 2009 J Biomed Sci CORRECTION.png
y Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed Sci 16:98. - Ā»Bioblast linkĀ«


Martinez-Reyes 2016 Mol Cell CORRECTION.png
z MartĆ­nez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199-209. - Ā»Bioblast linkĀ«


McCollum 2019 Front Plant Sci CORRECTION.png
Ī± McCollum C, GeiƟelsƶder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. Front Plant Sci 10:1262. - Ā»Bioblast linkĀ«


McElroy 2017 Exp Cell Res.png
Ī² McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356:217-22. - Ā»Bioblast linkĀ«


McElroy 2020 Cell Metab CORRECTION.png
Ī³ McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. Cell Metab 32:301-8.e6. - Ā»Bioblast linkĀ«


Morelli 2019 Open Biol CORRECTION.png
Ī“ Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - Ā»Bioblast linkĀ«


Nussbaum 2005 J Clin Invest CORRECTION.png
Īµ Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - Ā»Bioblast linkĀ«


Prochaska 2013 Springer CORRECTION.png
Ī¶ Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - Ā»Bioblast linkĀ«


Radogna 2021 Methods Mol Biol CORRECTION.png
Ī· Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. Methods Mol Biol 2276:129-141. - Ā»Bioblast linkĀ«


Raimondi 2020 Br J Cancer CORRECTION.png
Īø Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - Ā»Bioblast linkĀ«


Read 2021 Redox Biol CORRECTION.png
Ī¹ Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 47:102164. - Ā»Bioblast linkĀ«


Risiglione 2020 Int J Mol Sci CORRECTION.png
Īŗ Risiglione P, Leggio L, Cubisino SAM, Reina S, PaternĆ² G, Marchetti B, MagrƬ A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. - Ā»Bioblast linkĀ«


Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png
Ī» Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. Nutrition and Dietary Supplements 10:1-11. - Ā»Bioblast linkĀ«


Sanchez et al 2001 CORRECTION.png
Ī¼ Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - Ā»Bioblast linkĀ«


Sarmah 2019 Transl Stroke Res CORRECTION.png
Ī½ Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - Ā»Bioblast linkĀ«
Snyder 2009 Antioxid Redox Signal.png
Ī¾ Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid Redox Signal 11:2673-83. - Ā»Bioblast linkĀ«


Srivastava 2016 Clin Transl Med CORRECTION.png
Īæ Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med 5:25. - Ā»Bioblast linkĀ«


Szabo 2020 Int J Mol Sci CORRECTION.png
Ļ€ Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. Int J Mol Sci 21:6344. - Ā»Bioblast linkĀ«


Turton 2022 Int J Mol Sci CORRECTION.png
Ļƒ Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - Ā»Bioblast linkĀ«


Vekshin 2020 Springer Cham CORRECTION.png
Ļ„ Vekshin N (2020) Biophysics of mitochondria. Springer Cham: 197 pp. - Ā»Bioblast linkĀ«


Wang 2016 ACS Appl Mater Interfaces CORRECTION.png
Ļ… Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. ACS Appl Mater Interfaces 8:24509-16. - Ā»Bioblast linkĀ«


Yepez 2018 PLOS One Fig1B.jpg
Ļ† YĆ©pez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, KoňaÅ™Ć­kovĆ” E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - Ā»Bioblast linkĀ«


Yuan 2022 Oxid Med Cell Longev CORRECTION.png
Ļ‡ Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - Ā»Bioblast linkĀ«


Zhang 2018 Mil Med Res CORRECTION.png
Ļˆ Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - Ā»Bioblast linkĀ«



Supplement 4. FADH2 as substrate of CII and FAD + 2H+ as products

Figure S4. Complex II ambiguities: FADH2 as substrate of CII and FAD + 2H+ as products. Alphabetical sequence of publications from 2001 to 2023.
Ahmad 2022 StatPearls CORRECTION.png
a Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - Ā»Bioblast linkĀ«


Chen 2022 Int J Mol Sci CORRECTION.png
b Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. Int J Mol Sci 23:12926. - Ā»Bioblast linkĀ«


El-Gammal 2022 Pflugers Arch CORRECTION.png
c El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. Pflugers Arch 474:1043-51. - Ā»Bioblast linkĀ«


Hidalgo-Gutierrez CORRECTION.png
d Hidalgo-GutiĆ©rrez A, GonzĆ”lez-GarcĆ­a P, DĆ­az-Casado ME, Barriocanal-Casado E, LĆ³pez-Herrador S, Quinzii CM, LĆ³pez LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants (Basel) 10:520. - Ā»Bioblast linkĀ«


Payen 2019 Cancer Metastasis Rev CORRECTION.png
e Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 38:189-203. - Ā»Bioblast linkĀ«


Prasuhn 2021 Front Cell Dev Biol CORRECTION.png
f Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. Front Cell Dev Biol 8:615461. - Ā»Bioblast linkĀ«


Tseng 2022 Cells CORRECTION.png
g Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. Cells 11:4020. - Ā»Bioblast linkĀ«


Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
h Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion Orphan Drugs 9:151-60. - Ā»Bioblast linkĀ«


Yin 2021 FASEB J CORRECTION.png
i Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - Ā»Bioblast linkĀ«


Supplement 5. FADH2 as substrate of CII and FAD+ as product

Figure S5. Complex II ambiguities: FADH2 as substrate of CII and FAD+ as product. Alphabetical sequence of publications from 2001 to 2023.
Area-Gomez 2019 J Clin Invest CORRECTED.png
a Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 129:34-45. - Ā»Bioblast linkĀ«


Carriere 2019 Academic Press CORRECTION.png
b Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, PĆ©nicaud L, Rigoulet M (eds) Academic Press. - Ā»Bioblast linkĀ«


Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png
c, d Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - Ā»Bioblast linkĀ«


Gero 2018 IntechOpen CORRECTION.png
e Gero D (2023) Hyperglycemia-induced endothelial dysfunction. IntechOpen Chapter 8. - Ā»Bioblast linkĀ«


Onukwufor 2022 Antioxidants (Basel) CORRECTION.png
f Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. Antioxidants (Basel) 11:692. - Ā»Bioblast linkĀ«


Shirakawa 2023 Sci Rep CORRECTION.png
g Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - Ā»Bioblast linkĀ«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Sullivan 2014 Cell Cycle CORRECTION.png
h Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. Cell Cycle 13:347-8. - Ā»Bioblast linkĀ«


Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png
i Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. Cancers (Basel) 12:124. - Ā»Bioblast linkĀ«


Supplement 6. FADH2 or FADH as substrate of CII and FADH, FADH+, or FAD+ as product

Figure S6. Complex II ambiguities: FADH2 as substrate of CII and FADH or FADH+ as product. Sequence of publications from 2001 to 2023 according to (4) to (9).
Cadonic 2016 Mol Neurobiol CORRECTION.png
a Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078-90. - Ā»Bioblast linkĀ«


Kezic 2016 Oxid Med Cell Longev CORRECTION.png
b Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid Med Cell Longev 2016:2950503. - Ā»Bioblast linkĀ«


Li 2013 J Hematol Oncol CORRECTION.png
c Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19. - Ā»Bioblast linkĀ«


Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png
Ļ Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. J Biomed Res Environ Sci 1:105-13. - Ā»Bioblast linkĀ«


Yang 2020 Transl Neurodegener CORRECTION.png
d Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 9:19. - Ā»Bioblast linkĀ«


Torres 2017 Cell Metab CORRECTION.png
e Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17Ī²-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab 27:167-79. - Ā»Bioblast linkĀ«


Johnson 2013 Eukaryot Cell CORRECTION.png
f Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776-93. - Ā»Bioblast linkĀ«



Middleton 2021 Therap Adv CORRECTION.png
g Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 14:17562848211031394. - Ā»Bioblast linkĀ«


Puntel 2013 Toxicol In Vitro CORRECTION.png
h Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol In Vitro 27:59-70. - Ā»Bioblast linkĀ«


Xing 2022 Atlantis Press CORRECTION.png
i Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. Atlantis Press. - Ā»Bioblast linkĀ«



Supplement 7. FADH2 or FADH as substrate of CII in websites

Figure S7. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. FADH ā†’ FAD+H (g), FADH2 ā†’ FAD+2H+ (aā€™, c, h-n), and FADH2 ā†’ FAD (a, b, d-f, o-Īø) should be corrected to FADH2 ā†’ FAD (Eq. 3b). NADH ā†’ NAD+ is frequently written in graphs without showing the H+ on the left side of the arrow, except for (p-r). NADH ā†’ NAD++H+ (a-g, m), NADH ā†’ NAD++2H+ (h-l), NADH+H+ ā†’ NAD++2H+ (j, k), and NADH ā†’ NAD (Ī¹) should be corrected to NADH+H+ ā†’ NAD+ (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
OpenStax Biology.png
(a)
Website 1 (a,b): OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.11
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 1
Website 7 (a): LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 8 (a): - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
(aā€™)
Website 9 (aā€™,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 10 (aā€™,b,v): Saylor Academy
Expii OpenStax CORRECTION.png
(b)
Website 1 (a,b): OpenStax Biology - Fig. 7.12
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.13
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 3
Website 9 (aā€™,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 10 (aā€™,b,v): Saylor Academy
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Biologydictionary.net CORRECTION.png
(c)
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 13 (c): wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 14 (c): biologydictionary.net 2018-08-21
Website 15 (c): Quora
Website 16 (c): TeachMePhysiology - Fig. 1. 2023-03-13
Website 17 (c): toppr
Labxchange CORRECTION.png
(d)
Website 18 (d): Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Jack Westin CORRECTION.png
(e)
Website 19 (e): Jack Westin MCAT Courses
Videodelivery CORRECTION.png
(f)
Website 20 (f): videodelivery
SparkNotes CORRECTION.png
(g)
Website 21 (g): - SparkNotes
Researchtweet CORRECTION.png
(h)
Website 22 (h,t): researchtweet
Website 23 (h): Microbe Notes
FlexBooks 2 0 CORRECTION.png
(i)
Website 24 (i): FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Labster Theory CORRECTION.png
(j)
Website 25 (j): Labster Theory
Nau.edu CORRECTION.png
(k)
Website 26 (k): nau.edu
ScienceFacts CORRECTION.png
(l)
Website 27 (l): ScienceFacts
Ck12 CORRECTION.png
(m)
Website 28 (m): cK-12
Wikimedia ETC CORRECTION.png
(n)
Website 11 (b,c,n,w,Ī²): expii - Image source: By CNX OpenStax
Website 29 (n): Wikimedia
Creative-biolabs CORRECTION.png
(o)
Website 30 (o): creative-biolabs
Vector Mine CORRECTION.png
(p)
Website 31 (p): dreamstime
Website 32 (p): VectorMine
YouTube Dirty Medicine Biochemistry CORRECTION.png
(q)
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
DBriers CORRECTION.png
(r)
Website 34 (r): DBriers
SNC1D CORRECTION.png
(s)
Website 35 (s): SNC1D - BIOLOGY LESSON PLAN BLOG
ThoughtCo-Getty Images CORRECTION.png
(t)
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 22 (h,t): researchtweet
Website 36 (t): dreamstime
Hyperphysics CORRECTION.png
(u)
Website 37 (u): hyperphysics
Khan Academy CORRECTION.png
(v)
Website 9 (aā€™,b,v): Khan Academy
Website 10 (aā€™,b,v): Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
(w)
Website 11 (b,c,n,w,Ī²): expii - Whitney, Rolfes 2002
UrbanPro CORRECTION.png
(x)
Website 38 (x): UrbanPro
Quizlet CORRECTION.png
(y)
Website 39 (y): Quizlet
Unm.edu CORRECTION.png
(z)
Website 40 (z): unm.edu
YouTube sciencemusicvideos CORRECTION.png
(Ī±)
Website 41 (Ī±): YouTube sciencemusicvideos - Uploaded 2014-08-19
Expii-Gabi Slizewska CORRECTION.png
(Ī²)
Website 11 (b,c,n,w,Ī²): expii expii - Image source: By Gabi Slizewska
BiochemDen CORRECTION.png
(Ī³)
Website 42 (Ī³): BiochemDen.com
Hopes CORRECTION.png
(Ī“)
Website 43 (Ī“): hopes, Huntingtonā€™s outreach project for education, at Stanford
Studocu CORRECTION.png
(Īµ)
Website 44 (Īµ): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
ScienceDirect CORRECTION.png
(Ī¶)
Website 45 (Ī¶): ScienceDirect
BBC BITESIZE CORRECTION.png
(Ī·)
Website 46 (Ī·): BBC BITESIZE cK-12
Freepik CORRECTION.png
(Īø)
Website 47 (Īø): freepik
LibreTexts Chemistry CORRECTION.png
(Ī¹)
Website 48 (Ī¹): - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport ā€“ Fig. 12.4.3


Supplement 8. Weblinks on FAO and CII

(retrieved 2023-03-21 to 2023-05-02)
Website 49: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Website 50: The Medical Biochemistry Page: ā€˜In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttleā€™ (Figure 8d).
Website 51: CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


Supplement 9. CII as a proton pump

Figure S9. Complex II as a proton pump
Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png
a Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37:517-26. - Ā»Bioblast linkĀ«


Jian 2020 Cell Metab CORRECTION.png
b Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab 31:892-908. - Ā»Bioblast linkĀ«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Shirakawa 2023 Sci Rep CORRECTION.png
c Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - Ā»Bioblast linkĀ«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Expii-Gabi Slizewska CORRECTION.png
d: expii expii - Image source: By Gabi Slizewska: ā€˜FADH2 from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H+ ions into the intermembrane space and passes off electronsā€™ (retrieved 2023-05-04).
BioNinja 1 CORRECTION.png
BioNinja 2 CORRECTION.png
e,f: BioNinja (retrieved 2023-05-04).



Questions.jpg


Click to expand or collaps
Bioblast links: Substrates and cofactors - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Substrate
Ā» Substrate
Ā» Product
Ā» Substrates as electron donors
Ā» Cellular substrates
Ā» MitoPedia: Substrates and metabolites
Ā» Substrate-uncoupler-inhibitor titration
Cofactor
Ā» Cofactor
Ā» Coenzyme, cosubstrate
Ā» Nicotinamide adenine dinucleotide
Ā» Coenzyme Q2
Ā» Prosthetic group
Ā» Flavin adenine dinucleotide
Referennces
Ā» Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6


Labels:



Enzyme: Complex II;succinate dehydrogenase 



Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.