Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Semantic search

From Bioblast
TermAbbreviationDescription
Internationale Gesellschaft fuer Regenerative Mitochondrien-MedizinIGRMM e.V.

Organizer of

Interpolate pointsSelect Interpolate points in the Mark information window to interpolate all data points in the marked section of the active graph. See also Delete points and Restore points or Recalculate slope.
Intracellular oxygenpO2,iPhysiological, intracellular oxygen pressure is significantly lower than air saturation under normoxia, hence respiratory measurements carried out at air saturation are effectively hyperoxic for cultured cells and isolated mitochondria.
Intrinsic fluorophoresAn Intrinsic flourophore is a naturally occurring fluorophore of which NADH, aromatic amino acids and flavins are examples.
Ion-Selective Electrode TPP+ and Ca2+
Ion-Selective Electrode TPP+ and Ca2+.JPG

Ion-Selective Electrode TPP+ and Ca2+: ISE with 6 mm outer diameter shaft, for Stopper\white PVDF\angular Shaft\side+6.2+2.6 mm Port.

O2k-TPP+ ISE-Module: 2 ISE.

IonomycinImyIonomycin (Imy) is a ionophore used to raise intracellular [Ca2+].
Isocitrate
isocitrate

isocitrate, C6H5O7-3, is a tricarboxylic acid trianion, intermediate of the TCA cycle, obtained by isomerization of citrate. The process is catalyzed by aconitase, forming the enzyme-bound intermediate cis-aconitate.

Isocitrate dehydrogenaseIDHIsocitrate dehydrogenase forms 2-oxoglutarate from isocitrate in the TCA cycle.
Isolated mitochondriaimtIsolated mitochondria, imt, are mitochondria separated from a tissue or cells by breaking the plasma membranes and attachments to the cytoskeleton, followed by centrifugation steps to separate the mitochondria from other components.
Isolated systemThe boundaries of isolated systems are impermeable for all forms of energy and matter. Changes of isolated systems have exclusively internal origins, e.g., internal entropy production, diS/dt, internal formation of chemical species i which is produced in a reaction r, dini/dt = drni/dt. In isolated systems some internal terms are restricted to zero by various conservation laws which rule out the production or destruction of the respective quantity.
IsomorphicThe term isomorphic refers to quantities which have identical or similar form, shape, or structure. In mathematics, an isomorphism defines a one-to-one correspondence between two mathematical sets. In ergodynamics, isomorphic quantities are defined by equations of identical form. If isomorphic quantities are not expressed in identical units, then these quantities are expressed in different formats which can be converted to identical untis. Example: electric force [V=J/C] and chemical force [Jol=J/mol] are ismorphic forces; the electrical format [J/C] can be converted to the chemical format [J/mol] by the Faraday constant. Units not only give meaning to the numerical value of a quantity, but units provide also an abbreviated common language to communicate and compare isomorphic quantities. In irreversible thermodynamics, isomorphic forces are referred to as generalized forces.
Japanese Society of Mitochondrial Research and MedicineJ-mit
J-mit.png

The Japanese Society of Mitochondrial Research and Medicine (J-mit) was founded to share the latest knowledge on mitochondrial research. J-mit is the biggest Asian society of mitochondrial research and medicine and is a member of ASMRM.

JmaxJmaxJmax is the maximum pathway flux (e.g. oxygen flux) obtained at saturating substrate concentration. Jmax is a function of metabolic state. In hyperbolic ADP or oxygen kinetics, Jmax is calculated by extrapolation of the hyperbolic function, with good agreement between the calculated and directly measured fluxes, when substrate levels are >20 times the c50 or p50.
Journal indexingJournal indexing allows publications to be found on search tools/databases. Each database might have different criteria of inclusion.
Journal issueAn issue of a journal or periodical is a number, which typically indicates how many times a volume of the journal has been published in sequence.
Journal publicationIn most cases journal publication {Quote} will not be affected by posting a preprint. However, there are some publishers that do not consider papers that have already appeared online. We strongly recommend that you check all journals that you might submit to in advance {end of Quote}. A list of academic journals by preprint policy is available.
Journal volumeThe volume of a journal or periodical is a number, which in many cases indicates the sequential number of years the journal has been published. Alternatively, the volume number may indicate the current year, independent of the year in which the journal published its first volume. A volume may be subdivided into issues.
KelvinKThe kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 × 10−23 when expressed in the unit J x-1 K−1.
Keyboard shortcuts - DatLabDatLab provides several keyboard shortcuts to allow for quick access to many functions and settings without using a mouse.
Keywords-MitoPedia in BECKeywords—MitoPedia is the concept to link keywords in articles published in Bioenergetics Communications (BEC) to MitoPedia terms. Authors should consider the message in the selected keywords. Provide consistent definitions of your keywords by linking them to MitoPedia. Extend MitoPedia entries critically by your contributions. The BEC editorial team will hyperlink your keywords with MitoPedia, and a reference to your BEC publication will be generated automatically from the MitoPedia term to your publication. With your contributions, BEC elevates keywords to terms with meaning. Your article gains visibility.
KilogramkgThe kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10−34 when expressed in the unit J s, which is equal to kg m2 s−1, where the meter and the second are defined in terms of c and ΔνCs.
Korean Society of Mitochondrial Research and MedicineKSMRMThe Korean Society of Mitochondrial Research and Medicine (KSMRM) is a member of ASMRM.
Kynurenine hydroxylaseKynurenine hydroxylase (kynurenine 3-monooxygenase) is located in the outer mitochondrial membrane. Kynurenine hydroxylase catalyzes the chemical reaction: L-kynurenine + NADPH + H+ + O2 ↔ 3-hydroxy-L-kynurenine + NADP+ + H2O Kynurenine hydroxylase belongs to the family of oxidoreductases acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O2 with NADH or NADPH as one donor, and incorporation of one atom of oxygen into the other donor. This enzyme participates in tryptophan metabolism. It employs one cofactor, FAD.
L/E coupling-control ratioL/ELEAK control ratio The L/E coupling-control ratio is the flux ratio of LEAK respiration over ET capacity, as determined by measurement of oxygen consumption in L and E sequentially. The L/E coupling-control ratio is an index of uncoupling or dyscoupling at constant ET-capacity. L/E increases with uncoupling from a theoretical minimum of 0.0 for a fully coupled system, to 1.0 for a fully uncoupled system.
L/P coupling-control ratioL/PL/P coupling-control ratio The L/P coupling-control ratio or LEAK/OXPHOS coupling-control ratio combines the effects of coupling (L/E) and limitation by the phosphorylation system (P/E); L/P = (L/E) / (P/E) = 1/RCR.
L/R coupling-control ratioL/RL/R coupling-control ratio The L/R coupling-control ratio or LEAK/ROUTINE coupling-control ratio combines the effects of coupling (L/E), physiological control of energy demand, and limitation by the OXPHOS capacity.
LEAK respirationLL.jpg EAK respiration or LEAK oxygen flux L compensating for proton leak, proton slip, cation cycling and electron leak, is a dissipative component of respiration which is not available for performing biochemical work and thus related to heat production. LEAK respiration is measured in the LEAK state, in the presence of reducing substrate(s), but absence of ADP - abbreviated as L(n) (theoretically, absence of inorganic phosphate presents an alternative), or after enzymatic inhibition of the phosphorylation system, which can be reached with the use of oligomycin - abbreviated as L(Omy). The LEAK state is the non-phosphorylating resting state of intrinsic uncoupled or dyscoupled respiration when oxygen flux is maintained mainly to compensate for the proton leak at a high chemiosmotic potential, when ATP synthase is not active. In this non-phosphorylating resting state, the electrochemical proton gradient is increased to a maximum, exerting feedback control by depressing oxygen flux to a level determined mainly by the proton leak and the H+/O2 ratio. In this state of maximum protonmotive force, LEAK respiration, L, is higher than the LEAK component of OXPHOS capacity, P. The conditions for measurement and expression of respiration vary (oxygen flux in the LEAK state, JO2L, or oxygen flow, IO2L). If these conditions are defined and remain consistent within a given context, then the simple symbol L for respiratory rate can be used as a substitute for the more explicit expression for respiratory activity. » MiPNet article
LEAK state with ATPL(T)L.jpg The LEAK state with ATP is obtained in mt-preparations without ATPase activity after ADP is maximally phosphorylated to ATP (State 4; Chance and Williams 1955) or after addition of high ATP in the absence of ADP (Gnaiger et al 2000). Respiration in the LEAK state with ATP, L(T), is distinguished from L(n) and L(Omy).
LEAK state with oligomycinL(Omy)L.jpg The LEAK state with oligomycin is a LEAK state induced by inhibition of ATP synthase by oligomycin. ADP and ATP may or may not be present. LEAK respiration with oligomycin, L(Omy), is distinguished from L(n) and L(T).
LEAK state without adenylatesL(n)L.jpg In the LEAK state without adenylates mitochondrial LEAK respiration, L(n) (n for no adenylates), is measured after addition of substrates, which decreases slowly to the LEAK state after oxidation of endogenous substrates with no adenylates. L(n) is distinguished from L(T) and L(Omy).
Laboratory titration sheetLaboratory titration sheet contains the sequential titrations in a specific Substrate-uncoupler-inhibitor titration (SUIT) protocol. The laboratory titration sheets for different SUIT protocols are incorporated in DatLab (DL7.1): Protocols in DatLab
Lactate dehydrogenaseLDHLactate dehydrogenase is a glycolytic marker enzyme in the cytosol, regenerating NAD+ from NADH and pyruvate, forming lactate.
Laner 2013 Mitochondr Physiol Network MiP2013
Latent mitochondrial dysfunctionThe concept on latent mitochondrial dysfunction presents the working hypothesis that the dynamic mitochondrial stress response provides a more sensitive and integrative marker for degenerative disease-related defects compared to acute mitochondrial dysfunction. The risk for developing a disease may be quantified in terms of a stress response, rather than a static pathophysiological state. Acute and latent mitochondrial dysfunction are studied at baseline and in response to a particular (e.g. oxidative) stress, using a mitochondrial stress resistance test.
Layout for DatLab graphsA Layout in DatLab selected in the Layout menu yields a standardized display of graphs and plots displayed with specific scalings. The graph layout defines initial settings, which can be modified for plots [Ctrl+F6] and scaling [F6]. A modified layout can be saved as user layout without changing the standard layouts.
Least squares methodThis method makes use of all of the data points of the spectrum in order to quantify a measured spectrum with a reference spectrum of known concentration using a least squares method to match the measured spectrum with the reference spectrum. The technique results in improved accuracy compared with the use of only a few characteristic wavelengths.
Lengthl [m]Length l is an SI base quantity with SI base unit meter m. Quantities derived from length are area A [m2] and volume V [m3]. Length is an extensive quantity, increasing additively with the number of objects. The term 'height' h is used for length in cases of vertical position (see height of humans). Length of height per object, LUX [m·x-1] is length per unit-entity UX, in contrast to lentgth of a system, which may contain one or many entities, such as the length of a pipeline assembled from a number NX of individual pipes. Length is a quantity linked to direct sensory, practical experience, as reflected in terms related to length: long/short (height: tall/small). Terms such as 'long/short distance' are then used by analogy in the context of the more abstract quantity time (long/short duration).
Level flowEE.jpg Level flow is a steady state of a system with an input process coupled to an output process (coupled system), in which the output force is zero. Clearly, energy must be expended to maintain level flow, even though output is zero (Caplan and Essig 1983; referring to zero output force, while output flow may be maximum).
Light sourceA variety of light sources are available for fluorometry and spectrophotometry. These include deuterium, mercury and xenon arc lamps and quartz halogen bulbs dependent upon the wavelengths required. However, the advent of light emitting diodes has greatly increased the possibilities for the application of fluorometry and spectrophotometry to areas that were previously not practicable, and at a much reduced cost.
Light-emitting diodeLEDA light-emitting diode (LED) is a light source (semiconductor), used in many every-day applications and specifically in fluorometry. LEDs are available for specific spectral ranges across wavelengths in the visible, ultraviolet, and infrared range.
Light-enhanced dark respirationLEDRLight-enhanced dark respiration LEDR is a sharp (negative) maximum of dark respiration in plants in response to illumination, measured immediately after switching off the light. LEDR is supported by respiratory substrates produced during photosynthesis and closely reflects light-enhanced photorespiration (Xue et al 1996). Based on this assumption, the total photosynthetic oxygen flux TP is calculated as the sum of the measured net photosynthetic oxygen flux NP plus the absolute value of LEDR.
LightguidesLightguides consist of optical fibres (either single or in bundles) that can be used to transmit light to a sample from a remote light source and similarly receive light from a sample and transmit it to a remote detector. They have greatly contributed to the range of applications that for which optical methods can be applied. This is particularly true in the fields of medicine and biology.
Limiting oxygen pressureplThe limiting oxygen pressure, pl, is defined as the partial oxygen pressure, pO2, below which anaerobic catabolism is activated to contribute to total ATP generation. The limiting oxygen pressure, pl, may be substantially lower than the critical oxygen pressure, pc, below which aerobic catabolism (respiration or oxygen consumption) declines significantly.
Limiting pO2plimIn the transition from aerobic to anaerobic metabolism, there is a limiting pO2, plim, below which anaerobic energy flux is switched on and CR ratios become more exothermic than the oxycaloric equivalent. plim may be significanlty below the critical pO2.
Linear phenomenological lawsLinear phenomenological laws are at the core of the thermodynamics of irreversible processes TIP, considered to apply near equilibrium but more generally in transport processes (e.g. Fick's law). In TIP, linearity is discussed as the dependence of generalized flows I or fluxes J on generalized forces, J = -L·F, where L is expected to be constant (as a prerequisite for linearity) and must not be a function of the force F (affinity) for Onsager reciprocity to apply. This paradigm is challenged by the ergodynamic concept of fundamentally non-linear isomorphic flux-force relations and is replaced by the generalized isomorphic flux-pressure relations. Flows I [MU·s-1] and forces F [J·MU-1] are conjugated pairs, the product of which yields power, I·F = P [J·s-1 = W]. Flux J is system-size specific flow, such that volume-specific flux times force yields volume-specific power, PV = J·F [W·m-3]. Then vectoral and vectorial transport processes are inherently non-linear flux-force relationships, with L = u·c in continuous transport processes along a gradient (c is the local concentration), or L = u·α (α is the free activity in a discontinuous transport process across a semipermeable membrane) — formally not different from (isomorphic to) scalar chemical reactions.
LinearityLinearity is the ability of the method to produce test results that are proportional, either directly or by a well-defined mathematical transformation, to the concentration of the analyte in samples within a given range. This property is inherent in the Beer-Lambert law for absorbance alone, but deviations occur in scattering media. It is also a property of fluorescence, but a fluorophore may not exhibit linearity, particularly over a large range of concentrations.
Liver mitochondria purificationArmstrong 2010 J Comp Physiol B: This paper describes a method for purification of rodent liver mitochdondria using relatively low-speed centrifugation through discontinuous Percoll gradients.
Living CommunicationsLCWith Living Communications, Bioenergetics Communications (BEC) takes the next step from pre-print to re-print. The concept of Living Communications pursues a novel culture of scientific communication, addressing the conflict between long-term elaboration and validation of results versus sharing without delay improved methods and preliminary findings. Following the preprint concept, updates may be posted on the BEC website of the resource publication. Updated versions of Living Communications are submitted for Open Peer Review with full traceability. In contrast to static papers, evolution of Living Communications is more resourceful and efficient than a ‘new’ publication. Living Communications provide a pathway along the scientific culture of lively debate towards tested and trusted milestones of research, from pre-print to re-print, from initial steps to next steps.
Living cellsceCell viability in living cells should be >95 % for various experimental investigations, including cell respirometry. Viable cells (vce) are characterized by an intact plasma membrane barrier function. The total cell count (Nce) is the sum of viable cells (Nvce) and dead cells (Ndce). In contrast, the plasma membrane can be permeabilized selectively by mild detergents (digitonin), to obtain the mt-preparation of permeabilized cells used for cell ergometry. Living cells are frequently labelled as intact cells in the sense of the total cell count, but intact may suggest dual meanings of viable or unaffected by a disease or mitochondrial injury.
Loe 2013 PLOS ONE